Precipitous ideals

1980 ◽  
Vol 45 (1) ◽  
pp. 1-8 ◽  
Author(s):  
T. Jech ◽  
M. Magidor ◽  
W. Mitchell ◽  
K. Prikry

The properties of small cardinals such as ℵ1 tend to be much more complex than those of large cardinals, so that properties of ℵ1 may often be better understood by viewing them as large cardinal properties. In this paper we show that the existence of a precipitous ideal on ℵ1 is essentially the same as measurability.If I is an ideal on P(κ) then R(I) is the notion of forcing whose conditions are sets x ∈ P(κ)/I, with x ≤ x′ if x ⊆ x′. Thus a set D R(I)-generic over the ground model V is an ultrafilter on P(κ) ⋂ V extending the filter dual to I. The ideal I is said to be precipitous if κ ⊨R(I)(Vκ/D is wellfounded).One example of a precipitous ideal is the ideal dual to a κ-complete ultrafilter U on κ. This example is trivial since the generic ultrafilter D is equal to U and is already in the ground model. A generic set may be viewed as one that can be worked with in the ground model even though it is not actually in the ground model, so we might expect that cardinals such as ℵ1 that cannot be measurable still might have precipitous ideals, and such ideals might correspond closely to measures.

1992 ◽  
Vol 57 (2) ◽  
pp. 617-643 ◽  
Author(s):  
Carlos H. Montenegro E.

Our framework is ZFC, and we view cardinals as initial ordinals. Baumgartner ([Bal] and [Ba2]) studied properties of large cardinals by considering these properties as properties of normal ideals and not as properties of cardinals alone. In this paper we study these combinatorial properties by defining operations which take as input one or more ideals and give as output an ideal associated with a large cardinal property. We consider four operations T, P, S and C on ideals of a regular cardinal κ, and study the structure of the collection of subsets they give, and the relationships between them.The operation T is defined using combinatorial properties based on trees 〈X, <T〉 on subsets X ⊆ κ (where α <T β → α < β). Given an ideal I, consider the property *: “every tree on κ with every branching set in I has a branch of size κ” (where a branching set is a maximal set with the same set of <T-predecessors, and a chain is a maximal <T-linearly ordered set; for definitions see §2). Now consider the collection T(I) of all subsets of κ that do not satisfy * (see Definition 2.2 and the introduction to §5). The operation T provides us with the large cardinal property (whether κ ∈ T(I) or not) and it also provides us with the ideal associated with this large cardinal property (namely T(I)); in general, we obtain different notions depending on the ideal I.


2009 ◽  
Vol 74 (4) ◽  
pp. 1081-1099 ◽  
Author(s):  
Matthew Foreman

Many classical statements of set theory are settled by the existence of generic elementary embeddings that are analogous the elementary embeddings posited by large cardinals. [2] The embeddings analogous to measurable cardinals are determined by uniform, κ-complete precipitous ideals on cardinals κ. Stronger embeddings, analogous to those originating from supercompact or huge cardinals are encoded by normal fine ideals on sets such as [κ]<λ or [κ]λ.The embeddings generated from these ideals are limited in ways analogous to conventional large cardinals. Explicitly, if j: V → M is a generic elementary embedding with critical point κ and λ supnЄωjn(κ) and the forcing yielding j is λ-saturated then j“λ+ ∉ M. (See [2].)Ideals that yield embeddings that are analogous to strongly compact cardinals have more puzzling behavior and the analogy is not as straightforward. Some natural ideal properties of this kind have been shown to be inconsistent:Theorem 1 (Kunen). There is no ω2-saturated, countably complete uniform ideal on any cardinal in the interval [ℵω, ℵω).Generic embeddings that arise from countably complete, ω2-saturated ideals have the property that sup . So the Kunen result is striking in that it apparently allows strong ideals to exist above the conventional large cardinal limitations. The main result of this paper is that it is consistent (relative to a huge cardinal) that such ideals exist.


1981 ◽  
Vol 46 (2) ◽  
pp. 296-300 ◽  
Author(s):  
Yuzuru Kakuda

T. Jech and K. Prikry introduced the concept of precipitous ideals as a counterpart of measurable cardinals for small cardinals (Jech and Prikry [1]). To get a precipitous ideal on ℵ1( W. Mitchell used the Cohen extension by the standard Levy collapse that makes κ = ℵ1, where κ is a measurable cardinal in the ground model (Jech, Magidor, Mitchell and Prikry [2]). His proof essentially used the fact that , where is the notion of forcing of Levy collapse and j is the elementary embedding obtained by a normal ultrafilter on κ.On the other hand, we know that has the κ-chain condition. In this paper, we show that the κ-chain condition for notions of forcing plays an essential role for preserving normal precipitous ideals. Namely,Theorem 1. Let κ be a regular uncountable cardinal and I a normal ideal on κ. Let be a notion of forcing with the κ-chain condition. Then, I is precipitous iff ⊩“the ideal on κ generated by I is precipitous”.As an application of Theorem 1, we have the following theorem.Theorem 2. Let κ be a regular uncountable cardinal, and Γ be a κ-saturated normal ideal on κ. Then, {a < κ; the ideal of thin sets on a is precipitous} has either Γ-measure one or Γ-measure zero, and the ideal of thin sets on κ is precipitous iff {α< κ; the ideal of thin sets on α is precipitous) has Γ-measure one.


2006 ◽  
Vol 71 (3) ◽  
pp. 1029-1043 ◽  
Author(s):  
Natasha Dobrinen ◽  
Sy-David Friedman

AbstractThis paper investigates when it is possible for a partial ordering ℙ to force Pk(Λ)\V to be stationary in Vℙ. It follows from a result of Gitik that whenever ℙ adds a new real, then Pk(Λ)\V is stationary in Vℙ for each regular uncountable cardinal κ in Vℙ and all cardinals λ ≥ κ in Vℙ [4], However, a covering theorem of Magidor implies that when no new ω-sequences are added, large cardinals become necessary [7]. The following is equiconsistent with a proper class of ω1-Erdős cardinals: If ℙ is ℵ1-Cohen forcing, then Pk(Λ)\V is stationary in Vℙ, for all regular κ ≥ ℵ2and all λ ≩ κ. The following is equiconsistent with an ω1-Erdős cardinal: If ℙ is ℵ1-Cohen forcing, then is stationary in Vℙ. The following is equiconsistent with κ measurable cardinals: If ℙ is κ-Cohen forcing, then is stationary in Vℙ.


2021 ◽  
Vol 27 (2) ◽  
pp. 221-222
Author(s):  
Alejandro Poveda

AbstractThe dissertation under comment is a contribution to the area of Set Theory concerned with the interactions between the method of Forcing and the so-called Large Cardinal axioms.The dissertation is divided into two thematic blocks. In Block I we analyze the large-cardinal hierarchy between the first supercompact cardinal and Vopěnka’s Principle (Part I). In turn, Block II is devoted to the investigation of some problems arising from Singular Cardinal Combinatorics (Part II and Part III).We commence Part I by investigating the Identity Crisis phenomenon in the region comprised between the first supercompact cardinal and Vopěnka’s Principle. As a result, we generalize Magidor’s classical theorems [2] to this higher region of the large-cardinal hierarchy. Also, our analysis allows to settle all the questions that were left open in [1]. Finally, we conclude Part I by presenting a general theory of preservation of $C^{(n)}$ -extendible cardinals under class forcing iterations. From this analysis we derive several applications. For instance, our arguments are used to show that an extendible cardinal is consistent with “ $(\lambda ^{+\omega })^{\mathrm {HOD}}<\lambda ^+$ , for every regular cardinal $\lambda $ .” In particular, if Woodin’s HOD Conjecture holds, and therefore it is provable in ZFC + “There exists an extendible cardinal” that above the first extendible cardinal every singular cardinal $\lambda $ is singular in HOD and $(\lambda ^+)^{\textrm {{HOD}}}=\lambda ^+$ , there may still be no agreement at all between V and HOD about successors of regular cardinals.In Part II and Part III we analyse the relationship between the Singular Cardinal Hypothesis (SCH) with other relevant combinatorial principles at the level of successors of singular cardinals. Two of these are the Tree Property and the Reflection of Stationary sets, which are central in Infinite Combinatorics.Specifically, Part II is devoted to prove the consistency of the Tree Property at both $\kappa ^+$ and $\kappa ^{++}$ , whenever $\kappa $ is a strong limit singular cardinal witnessing an arbitrary failure of the SCH. This generalizes the main result of [3] in two senses: it allows arbitrary cofinalities for $\kappa $ and arbitrary failures for the SCH.In the last part of the dissertation (Part III) we introduce the notion of $\Sigma $ -Prikry forcing. This new concept allows an abstract and uniform approach to the theory of Prikry-type forcings and encompasses several classical examples of Prikry-type forcing notions, such as the classical Prikry forcing, the Gitik-Sharon poset, or the Extender Based Prikry forcing, among many others.Our motivation in this part of the dissertation is to prove an iteration theorem at the level of the successor of a singular cardinal. Specifically, we aim for a theorem asserting that every $\kappa ^{++}$ -length iteration with support of size $\leq \kappa $ has the $\kappa ^{++}$ -cc, provided the iterates belong to a relevant class of $\kappa ^{++}$ -cc forcings. While there are a myriad of works on this vein for regular cardinals, this contrasts with the dearth of investigations in the parallel context of singular cardinals. Our main contribution is the proof that such a result is available whenever the class of forcings under consideration is the family of $\Sigma $ -Prikry forcings. Finally, and as an application, we prove that it is consistent—modulo large cardinals—the existence of a strong limit cardinal $\kappa $ with countable cofinality such that $\mathrm {SCH}_\kappa $ fails and every finite family of stationary subsets of $\kappa ^+$ reflects simultaneously.


2014 ◽  
Vol 79 (4) ◽  
pp. 1092-1119 ◽  
Author(s):  
WILL BONEY

AbstractWe show that Shelah’s Eventual Categoricity Conjecture for successors follows from the existence of class many strongly compact cardinals. This is the first time the consistency of this conjecture has been proven. We do so by showing that every AEC withLS(K) below a strongly compact cardinalκis <κ-tame and applying the categoricity transfer of Grossberg and VanDieren [11]. These techniques also apply to measurable and weakly compact cardinals and we prove similar tameness results under those hypotheses. We isolate a dual property to tameness, calledtype shortness, and show that it follows similarly from large cardinals.


2011 ◽  
Vol 76 (2) ◽  
pp. 519-540 ◽  
Author(s):  
Victoria Gitman

AbstractOne of the numerous characterizations of a Ramsey cardinal κ involves the existence of certain types of elementary embeddings for transitive sets of size κ satisfying a large fragment of ZFC. We introduce new large cardinal axioms generalizing the Ramsey elementary embeddings characterization and show that they form a natural hierarchy between weakly compact cardinals and measurable cardinals. These new axioms serve to further our knowledge about the elementary embedding properties of smaller large cardinals, in particular those still consistent with V = L.


2019 ◽  
Vol 84 (02) ◽  
pp. 473-496 ◽  
Author(s):  
JING ZHANG

AbstractThe classical Halpern–Läuchli theorem states that for any finite coloring of a finite product of finitely branching perfect trees of height ω, there exist strong subtrees sharing the same level set such that tuples in the product of the strong subtrees consisting of elements lying on the same level get the same color. Relative to large cardinals, we establish the consistency of a tail cone version of the Halpern–Läuchli theorem at a large cardinal (see Theorem 3.1), which, roughly speaking, deals with many colorings simultaneously and diagonally. Among other applications, we generalize a polarized partition relation on rational numbers due to Laver and Galvin to one on linear orders of larger saturation.


2009 ◽  
Vol 74 (2) ◽  
pp. 641-654 ◽  
Author(s):  
Andrew D. Brooke-Taylor

AbstractWe use a reverse Easton forcing iteration to obtain a universe with a definable well-order, while preserving the GCH and proper classes of a variety of very large cardinals. This is achieved by coding using the principle , at a proper class of cardinals κ. By choosing the cardinals at which coding occurs sufficiently sparsely, we are able to lift the embeddings witnessing the large cardinal properties without having to meet any non-trivial master conditions.


2011 ◽  
Vol 76 (2) ◽  
pp. 541-560 ◽  
Author(s):  
Victoria Gitman ◽  
P. D. Welch

AbstractThis paper continues the study of the Ramsey-like large cardinals introduced in [5] and [14]. Ramsey-like cardinals are defined by generalizing the characterization of Ramsey cardinals via the existence of elementary embeddings. Ultrafilters derived from such embeddings are fully iterable and so it is natural to ask about large cardinal notions asserting the existence of ultrafilters allowing only α-many iterations for some countable ordinal α. Here we study such α-iterable cardinals. We show that the α-iterable cardinals form a strict hierarchy for α ≤ ω1, that they are downward absolute to L for , and that the consistency strength of Schindler's remarkable cardinals is strictly between 1-iterable and 2-iterable cardinals.We show that the strongly Ramsey and super Ramsey cardinals from [5] are downward absolute to the core model K. Finally, we use a forcing argument from a strongly Ramsey cardinal to separate the notions of Ramsey and virtually Ramsey cardinals. These were introduced in [14] as an upper bound on the consistency strength of the Intermediate Chang's Conjecture.


Sign in / Sign up

Export Citation Format

Share Document