Population Dynamics of Trifolium balansae and T. Resupinatum in self- Regenerating Pastures. II. Predicting Long-Term Persistence from a Demographic Model

1996 ◽  
Vol 33 (6) ◽  
pp. 1251 ◽  
Author(s):  
P. I. Jansen ◽  
R. L. Ison ◽  
R. D. Cousens
2017 ◽  
Vol 3 (1) ◽  
pp. 18-26
Author(s):  
Giovanni Amori ◽  
Valentina De Silvestro ◽  
Paolo Ciucci ◽  
Luca Luiselli

Abstract1. Population density (ind/ha) of long-term (>15 years) series of CMR populations, using distinct demographic models designed for both open and closed populations, were analysed for two sympatric species of rodents (Myodes glareolus and Apodemus flavicollis) from a mountain area in central Italy, in order to test the relative performance of various employed demographic models. In particular, the hypothesis that enumeration models systematically underestimate the population size of a given population was tested.2. Overall, we compared the performance of 7 distinct demographic models, including both closed and open models, for each study species. Although the two species revealed remarkable intrinsic differences in demography traits (for instance, a lower propensity for being recaptured in Apodemus flavicollis), the Robust Design appeared to be the best fitting model, showing that it is the most suitable model for long-term studies.3. Among the various analysed demographic models, Jolly-Seber returned the lower estimates of population density for both species. Thus, this demographic model could not be suggested for being applied for long-term studies of small mammal populations because it tends to remarkably underestimate the effective population size. Nonetheless, yearly estimates of population density by Jolly-Seber correlated positively with yearly estimates of population density by closed population models, thus showing that interannual trends in population dynamics were uncovered by both types of demographic models, although with different values in terms of true population size.


2017 ◽  
Vol 7 (4) ◽  
pp. 65-72
Author(s):  
V. N. Shmagol' ◽  
V. L. Yarysh ◽  
S. P. Ivanov ◽  
V. I. Maltsev

<p>The long-term population dynamics of the red deer (<em>Cervus elaphus</em> L.) and European roe deer (<em>Capreolus</em> <em>capreolus</em> L.) at the mountain and forest zone of Crimea during 1980-2017 is presented. Fluctuations in numbers of both species are cyclical and partly synchronous. Period of oscillations in the population of red deer is about 25 years, the average duration of the oscillation period of number of roe deer is 12.3 years. During the fluctuations in the number the increasing and fall in population number of the red deer had been as 26-47 %, and roe deer – as 22-34 %. Basing on the dada obtained we have assumed that together with large-scale cycles of fluctuations in population number of both red deer and roe deer the short cycles of fluctuations in the number of these species with period from 3.5 to 7.5 years take place. Significant differences of the parameters of cyclical fluctuations in the number of roe deer at some sites of the Mountainous Crimea: breaches of synchronicity, as well as significant differences in the duration of cycles are revealed. The greatest deviations from the average values of parameters of long-term dynamics of the number of roe deer in Crimea are noted for groups of this species at two protected areas. At the Crimean Nature Reserve the cycle time of fluctuations of the numbers of roe deer was 18 years. At the Karadag Nature Reserve since 1976 we can see an exponential growth in number of roe deer that is continued up to the present time. By 2016 the number of roe deer reached 750 individuals at a density of 437 animals per 1 thousand ha. Peculiarity of dynamics of number of roe deer at some sites proves the existence in the mountain forest of Crimea several relatively isolated groups of deer. We assumed that "island" location of the Crimean populations of red deer and European roe deer, their relatively little number and influence of permanent extreme factors of both natural and anthropogenic origination have contributed to a mechanism of survival of these populations. The elements of such a mechanism include the following features of long-term dynamics of the population: the reduction in the period of cyclic population fluctuations, while maintaining their amplitude and the appearance of additional small cycles, providing more flexible response of the population to the impact of both negative and positive environmental factors. From the totality of the weather conditions for the Crimean population of roe deer the recurring periods of increases and downs in the annual precipitation amount may have relevance. There was a trend of increase in the roe deer population during periods of increasing annual precipitation.</p>


Author(s):  
Lisa J. Faust ◽  
Claudine André ◽  
Raphaël Belais ◽  
Fanny Minesi ◽  
Zjef Pereboom ◽  
...  

Wildlife sanctuaries rescue, rehabilitate, reintroduce and provide life-long care for orphaned and injured animals. Understanding a sanctuary’s population dynamics—patterns in arrival, mortality and projected changes in population size—allows careful planning for future needs. Building on previous work on the population dynamics of chimpanzees (Pan troglodytes) in sanctuaries of the Pan African Sanctuary Alliance (PASA; Faust et al. 2011), this chapter extends analyses to the only PASA bonobo sanctuary. Its authors analysed historic demographic patterns and projected future population dynamics using an individual-based demographic model. The population has been growing at 6.7 per cent per year, driven by arrivals of new individuals (mean = 5.5 arrivals per year). Several model scenarios projecting varying arrival rates, releases and breeding scenarios clarify potential future growth trajectories for the sanctuary. This research illustrates how data on historic dynamics can be modelled to inform future sanctuary capacity and management needs. Les sanctuaires de faune secourent, réhabilitent, réintroduisent, et fournissent des soins pour toute la vie aux animaux orphelins et blessés. Comprendre les dynamiques de la population d’un sanctuaire—les motifs d’arrivée, mortalité, et de changements projetés de la taille de la population—permet une planification prudente pour les nécessités du futur. En se basant sur le travail déjà fait sur les dynamiques de la population chimpanzé (Pan troglodytes) dans les sanctuaires du Pan African Sanctuary Alliance (PASA; Faust et al. 2011), nous étendons notre analyse au seul sanctuaire bonobo par PASA. Nous avons analysé les motifs démographiques historiques et avons projeté les futures dynamiques de la population en utilisant un modèle démographique basé sur l’individu. La population augmente de 6.7 per cent par an, poussée par l’arrivée de nouveaux individus (moyenne = 5.5 arrivées par an). Plusieurs scénarios modèles montrent une trajectoire de potentielle croissance pour le sanctuaire. Cette recherche illustre comment modeler les données sur les dynamiques historiques pour informer la capacité future du sanctuaire et les besoins gestionnaires.


Flora ◽  
2011 ◽  
Vol 206 (7) ◽  
pp. 622-630 ◽  
Author(s):  
Joachim Schrautzer ◽  
Andreas Fichtner ◽  
Aiko Huckauf ◽  
Leonid Rasran ◽  
Kai Jensen
Keyword(s):  

2015 ◽  
Vol 282 (1806) ◽  
pp. 20150173 ◽  
Author(s):  
Ayco J. M. Tack ◽  
Tommi Mononen ◽  
Ilkka Hanski

Climate change is known to shift species' geographical ranges, phenologies and abundances, but less is known about other population dynamic consequences. Here, we analyse spatio-temporal dynamics of the Glanville fritillary butterfly ( Melitaea cinxia ) in a network of 4000 dry meadows during 21 years. The results demonstrate two strong, related patterns: the amplitude of year-to-year fluctuations in the size of the metapopulation as a whole has increased, though there is no long-term trend in average abundance; and there is a highly significant increase in the level of spatial synchrony in population dynamics. The increased synchrony cannot be explained by increasing within-year spatial correlation in precipitation, the key environmental driver of population change, or in per capita growth rate. On the other hand, the frequency of drought during a critical life-history stage (early larval instars) has increased over the years, which is sufficient to explain the increasing amplitude and the expanding spatial synchrony in metapopulation dynamics. Increased spatial synchrony has the general effect of reducing long-term metapopulation viability even if there is no change in average metapopulation size. This study demonstrates how temporal changes in weather conditions can lead to striking changes in spatio-temporal population dynamics.


2016 ◽  
Vol 27 (1) ◽  
pp. 140-152 ◽  
Author(s):  
DANA G. SCHABO ◽  
SONJA HEUNER ◽  
MICHAEL V. NEETHLING ◽  
SASCHA RÖSNER ◽  
ROGER UYS ◽  
...  

SummaryThe number of vultures is declining in many parts of the world due to numerous threats, such as poisoning and collisions with power-lines as well as the lack of adequate food sources. Vulture restaurants, i.e. supplementary feeding stations, have become a widespread conservation tool aimed at supporting vulture colonies. However, it is poorly understood how vulture restaurants influence population dynamics and whether they affect breeding success of vulture populations. We used a 12-year dataset from a breeding colony of the Cape Vulture Gyps coprotheres and a nearby vulture restaurant in South Africa to investigate the effect of supplementary food on population dynamics and breeding success. We found a significantly positive effect of supplementary food during the nest-building stage on the number of breeding pairs. However, breeding success, i.e. the proportion of successful nests, did not depend on supplementary food during the incubation and rearing stage. Especially during the critical rearing stage, the amount of food supplied might not have been sufficient to meet food demands of the colony. Still, our results indicate that carefully managed vulture restaurants might stabilise vulture colonies and can therefore aid vulture conservation.


Sign in / Sign up

Export Citation Format

Share Document