Chloroplast DNA evidence for the evolution ofMicroseris(Asteraceae) in Australia and New Zealand after long-distance dispersal from western North America

1999 ◽  
Vol 86 (10) ◽  
pp. 1448-1463 ◽  
Author(s):  
Kitty Vijverberg ◽  
Ted H. M. Mes ◽  
Konrad Bachmann
2002 ◽  
Vol 50 (1) ◽  
pp. 127 ◽  
Author(s):  
Kitty Vijverberg ◽  
Louis Lie ◽  
Konrad Bachmann

The Australian and New Zealand Microseris is supposed to have evolved from one or a few diaspores after a unique event of long-distance dispersal from western North America. At present, the plant group includes two species, M. lanceolata (Walp.) Sch.-Bip. and M. scapigera (Forst.) Sch.-Bip., each with two morphologically and ecologically divergent ecotypes. In spite of this classification, the morphological variation within and among ecotypes is not entirely consistent, and molecular investigations show evidence for the, possibly recent, occurrence of hybridisations between plants of different ecotypes. The present study investigates the overall morphological similarities among 1–4 plants of each of 54 Australian and New Zealand Microseris populations. The aim of the study was to gain further insights into the delimitation of species and ecotypes, the placement of populations that could thus far not be assigned to an ecotype and the adaptive radiation of the plant group. The results confirm the previously defined ecotypes and assign all but two of the questionable populations to ecotypes. They show that a broad range of character states rather than a few 'diagnostic' ones are specific for the ecotypes. The data confirm our earlier conclusion from molecular results, indicating that ecotype characteristics are maintained or reestablished by selection or adaptation, after dispersal or hybridisation between ecotypes. Despite (incidental) genetic exchange among populations of different ecotypes, the process of adaptive radiation is progressing. The combined morphological and molecular results are not incongruent with the present species delimitation. However, they also may support the split up of M. scapigera into two species and other phylogenetic solutions.


Author(s):  
E. Punithalingam

Abstract A description is provided for Scirrhia pini[Mycosphaerella pini]. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: On pines including Pinus radiata and its hybrids, P. halepensis, P. canariensis, P. carbaea, P. ponderosa, P. nigra and others, Pseudotsuga menziesii (46, 2860), Larix decidua (49, 273). DISEASE: Dothistroma blight; red band. GEOGRAPHICAL DISTRIBUTION: North America (Canada, USA including Alaska), South America (Argentina, Brazil, Chile, Uruguay), Australasia and Oceania (New Zealand), Asia (Brunei, India, Japan), Africa (Ethiopia, Kenya, Malawi, Rhodesia, Swaziland, Tanzania, Uganda), Europe (Austria, France, Rumania, UK, USSR (Republic of Georgia), Yugoslavia) (CMI Map 419, ed. 2, 1970; record in CMI Herbarium). TRANSMISSION: By airborne conidia released and dispersed by a splash take-off mechanism for short distances. Long distance dispersal may be by transport of infected material, such as nursery stock and, under special conditions, clouds may carry sporal inoculum (43, 2100). Survival time of inoculum in the form of cast, infected foliage on the forest floor is limited to 2-6 months under moist conditions (50, 2003).


2018 ◽  
Vol 30 (1) ◽  
pp. 89-105
Author(s):  
Jay C. Martin

Boxy and with ‘unseaworthy form’, the sailing scow was not the most aesthetically pleasing of watercraft. Yet the durable hull design based upon European predecessors found a new home in North America where it proliferated on the Atlantic, Gulf, Pacific and Great Lakes coasts because of its practicality for largely unimproved waterways. Scows were widely used on the Great Lakes in the nineteenth century, moving beyond shallow waters and gaining a reputation for reliability in long-distance trade. Late in the century, the technology arrived in New Zealand, where it prospered in a niche market that combined open water voyages and shallow river, port, or beach loading and unloading. The Great Lakes scows presented an alternative for entry into ship ownership on the North American frontier. The development of the New Zealand scow confirmed these findings comparatively in an international context during the late nineteenth and early twentieth centuries.


2020 ◽  
Author(s):  
James F Hancock ◽  
Harold H Prince

Abstract Background and Aims The beach strawberry, Fragaria chiloensis, is found in a narrow coastal band from the Aleutian Islands to central California and then jumps thousands of kilometres all the way to Hawaii and Chile. As it probably had a North American origin, it must have been introduced to the other locations by long-distance dispersal. The aim of this study was to determine which agent carried the beach strawberry to its Pacific and South American locations. Methods A deductive framework was constructed to separate between the possible modes of long-distance dispersal involving animals, wind and ocean currents. Bird migration was subsequently identified as the most likely scenario, and then the routes, habitats, feeding preferences and flight distances of all the shorebird species were evaluated to determine the most likely carrier. Key Results Six species migrate between North America and Chile and feed on the beaches and rocky shores where F. chiloensis grows naturally: Black-bellied Plovers, Greater Yellowlegs, Ruddy Turnstones, Sanderlings, Whimbrels and Willets. Of these, only two eat fruit and migrate in long continuous flight: Ruddy Turnstones and Whimbrels. Two species travel between North America and Hawaii, eat fruit and forage on the beaches and rocky shores where F. chiloensis grows naturally: Pacific Golden-plovers and Ruddy Turnstones. Ruddy Turnstones eat far less fruit than Pacific Golden-plovers and Whimbrels, making them less likely to have introduced the beach strawberry to either location. Conclusions We provide evidence that F. chiloesis seeds were probably dispersed to Hawaii by Pacific Golden-plovers and to Chile by Whimbrels.


2012 ◽  
Vol 44 (2) ◽  
pp. 189-246 ◽  
Author(s):  
Gintaras KANTVILAS

AbstractWith 30 species, Tasmania is a major area of species diversity in the genus Menegazzia. Seven of these are new to science: M. abscondita Kantvilas, known from Tasmania and New Zealand, and M. athrotaxidis Kantvilas, M. hypogymnioides Kantvilas, M. petraea Kantvilas, M. ramulicola Kantvilas, M. subtestacea Kantvilas and M. tarkinea Kantvilas, all endemic to Tasmania. An identification key, descriptions based exclusively on Tasmanian collections, and detailed discussion of distribution, ecology, chemical composition and inter-species relationships are provided. All literature records of Menegazzia species pertaining to Tasmania are accounted for. New synonyms include: Menegazzia prototypica P. James and Parmelia pertusa var. coskinodes F. Wilson [synonyms of M. myriotrema (Müll. Arg.) R. Sant.], M. fertilis P. James [a synonym of M. platytrema (Müll. Arg.) R. Sant.] and Parmelia pertusa var. montana F. Wilson (a synonym of M. subtestacea). Incorrectly recorded species that should be deleted from the Tasmanian census include M. castanea P. James & D. J. Galloway (present on Macquarie Island) and M. testacea P. James & D. J. Galloway (endemic to New Zealand). The South American species, M. sanguinascens (Räs.) R. Sant., is recorded in Australasia (Tasmania) for the first time, whereas the widespread south-eastern Australian M. norstictica P. James is recorded for Western Australia. Salient features of the genus are discussed, including morphology, anatomy and chemistry. The biogeography of the genus is explored briefly. Twelve species (40%) are endemic to Tasmania, a level of endemism unmatched by any other species-rich genus on the island. Twelve species are shared with mainland Australia, eleven are shared with New Zealand, and only four species are shared with southern South America, all of which are sorediate, suggesting they are products of long-distance dispersal.


1961 ◽  
Vol 39 (3) ◽  
pp. 655-665 ◽  
Author(s):  
Michael J. Pratt

Two viruses, clover yellow mosaic (CYMV) and white clover mosaic (WCMV), were separated from mixed natural infections of various clovers by inoculation of differential hosts. The host reactions of four CYMV and two WCMV isolates were studied in detail. Precipitin tests showed that the two viruses are not related serologically. In cross-absorption tests different host reactions characterizing individual CYMV isolates were reflected in serological interactions; with WCMV isolates the relationship was less clearly defined. A comparison of isolates from different parts of the world by serological methods showed that CYMV is common in western North America, while WCMV occurs in Europe, North America, and New Zealand. Pea mottle and pea wilt viruses may be equated with CYMV and WCMV respectively.


2006 ◽  
Vol 84 (8) ◽  
pp. 1266-1281 ◽  
Author(s):  
Gabriel Bernardello ◽  
Gregory J. Anderson ◽  
Tod F. Stuessy ◽  
Daniel J. Crawford

We review the hypothesized origin and the methods of arrival of the angiosperm colonists to the Juan Fernandez Islands. We also summarize the dispersal capabilities of the current flora, including data on fruit type, fruit length, and dispersal unit length, correlating these features with dispersal and establishment. Most species originated from South America, followed by Pantropical, Australian, New Zealand, and Pacific colonizers. Sea and land birds were the most important initial long-distance dispersal agents. Most colonizing species are hermaphroditic flowered, and thus all dispersal methods are represented among them. Monoecious, andromonoecious and gynomonoecious, dioecious, and polygamous species were mainly carried by birds. Most wind- and bird-pollinated colonizing genera arrived with birds as did most annual herbs and species with bright-colored flowers. In the current flora, the majority of the species have dry fruits. In monoecious, andromonoecious and gynomonoecious, and dioecious species, achenes predominate. Fleshy fruits are limited to perennials. Most species have medium to small dispersal units, and generally, the larger the flower, the larger the fruit. Large- and medium-sized dispersal units are common in shrubs and trees. Abiotic dispersal is common in the current flora, which may reflect the ancestral dispersal capability of the colonizers, or adaptation to the absence of a fauna to disperse seeds and fruits. Anemochorous and autochorous species are mainly perennial and have medium to large, unisexual flowers. Anemochorous species have small dispersal units and dull-colored flowers, whereas large dispersal units and brightly colored flowers are frequent in autochorous species. Medium-sized dispersal units are represented in autochorous or ornithochorous species. The establishment and evolution of this flora was previously discussed to have occurred with very few pollination and (or) reproductive options. This study suggests that elements associated with dispersal are also analogously limited.


2006 ◽  
Vol 12 (1) ◽  
pp. 71-79 ◽  
Author(s):  
Jim R. Muirhead ◽  
Brian Leung ◽  
Colin Overdijk ◽  
David W. Kelly ◽  
Kanavillil Nandakumar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document