Ionizing Radiation Enhances Platelet Adhesion to the Extracellular Matrix of Human Endothelial Cells by an Increase in the Release of von Willebrand Factor

1994 ◽  
Vol 137 (2) ◽  
pp. 202 ◽  
Author(s):  
Marcel Verheij ◽  
Luc G. H. Dewit ◽  
Martine N. Boomgaard ◽  
Herm-Jan M. Brinkman ◽  
Jan A. van Mourik
Blood ◽  
1987 ◽  
Vol 69 (5) ◽  
pp. 1531-1534 ◽  
Author(s):  
LA Sporn ◽  
VJ Marder ◽  
DD Wagner

Abstract Large multimers of von Willebrand factor (vWf) are released from the Weibel-Palade bodies of cultured endothelial cells following treatment with a secretagogue (Sporn et al, Cell 46:185, 1986). These multimers were shown by immunofluorescent staining to bind more extensively to the extracellular matrix of human foreskin fibroblasts than constitutively secreted vWf, which is composed predominantly of dimeric molecules. Increased binding of A23187-released vWf was not due to another component present in the releasate, since releasate from which vWf was adsorbed, when added together with constitutively secreted vWf, did not promote binding. When iodinated plasma vWf was overlaid onto the fibroblasts, the large forms bound preferentially to the matrix. These results indicated that the enhanced binding of the vWf released from the Weibel-Palade bodies was likely due to its large multimeric size. It appears that multivalency is an important component of vWf interaction with the extracellular matrix, just as has been shown for vWf interaction with platelets. The pool of vWf contained within the Weibel-Palade bodies, therefore, is not only especially suited for platelet binding, but also for interaction with the extracellular matrix.


Author(s):  
Nikolett Wohner ◽  
Silvie Sebastian ◽  
Vincent Muczynski ◽  
Dana Huskens ◽  
Bas Laat ◽  
...  

1987 ◽  
Author(s):  
J H Reinders ◽  
C L Verweii ◽  
J A V Mourlk ◽  
Ph G de Groot

Endothelial cells, cultured from human umbilical veins, synthesize von Willebrand Factor (vWF), that is stored by the cells in Weibel-Palade bodies, secreted into the medium and incorporated into the extracellular matrix underneath the cells. We have studied the influence of perturbation by phorbol esters and thrombin on the cellular distribution of vWF. Short-term (< 1 hour) treatment of endothelial cells with phorbol ester PMA or thrombin resulted in the release of cellular stored vWF. Long-term treatment with perturbants evoked a distinct change in the endothelial cell distribution of vWF, evident 24 to 48 hours after exposure. While the contents of the vWF storage vesicles were gradually restored within 48 hours, enhanced amounts of vWF were secreted into the medium. However, PMA did not increase the endothelial cell contents of mRNA encoding for vWF. The number as well as the size of vWF storage granules in the cells increased after exposure to perturbants. The perturbed cells responded to stimuli in releasing stored vWF, the amounts secreted were even greater than those in control cells. The extracellular matrix lost its vWF contents as the result of PMA or thrombin treatment, by blocking deposition of vWF in the matrix, not by enhancing degradation of matrix vWF. In perfusion experiments, the adhesion of washed platelets onto the isolated matrix of perturbed cells was considerable less than that in controls. Addition of vWF to the perfusate overcame this impairment. Thus, perturbation of endothelial cells changes the cellular distribution of vWF.Supported in part by ZWO grants 13-30-31 and 13-90-91 and Netherlands Heart Foundation grant 28.004.


Blood ◽  
1990 ◽  
Vol 75 (11) ◽  
pp. 2177-2184 ◽  
Author(s):  
SH Tannenbaum ◽  
HR Gralnick

Abstract Endothelial cells (EC) synthesize and secrete von Willebrand factor (vWF), a multimeric glycoprotein required for normal hemostasis. Within human endothelial cells, vWF multimers of extremely high molecular weight are stored in rod-shaped organelles known as Weibel-Palade bodies. Inflammatory mediators, such as interleukin-1, induce in vitro a variety of procoagulant responses by EC, including the secretion of stored vWF. We postulated that other inflammatory mediators might act to balance this procoagulant reaction, thereby assisting in the maintenance of blood fluidity during immune activation. Both gamma- interferon (gamma-IFN) and tumor necrosis factor (TNF) were found to act independently and cooperatively to depress the stimulated release of vWF from EC. Analysis of stored vWF in either gamma-IFN and/or TNF- treated EC demonstrated a loss of high molecular weight multimers while immunofluorescent studies documented a loss of visible Weibel-Palade bodies. This suggests that gamma-IFN and TNF interfere with normal vWF storage. gamma-IFN acted in a dose-, time-, and RNA-dependent fashion, and its inhibition of vWF release was reversible with time. No effect of gamma-IFN on EC was noted when anti-serum to gamma-IFN was added. Unlike gamma-IFN, alpha-interferon did not effect EC vWF. Therefore, gamma-IFN and TNF may be important in decreasing vWF release during inflammatory or immunologic episodes.


Blood ◽  
1998 ◽  
Vol 91 (4) ◽  
pp. 1304-1317 ◽  
Author(s):  
Catherine P. M. Hayward ◽  
Elisabeth M. Cramer ◽  
Zhili Song ◽  
Shilun Zheng ◽  
Roxanna Fung ◽  
...  

Abstract Multimerin is a novel, massive, soluble protein that resembles von Willebrand factor in its repeating, homomultimeric structure. Both proteins are expressed by megakaryocytes and endothelial cells and are stored in the region of platelet α-granules resembling Weibel-Palade bodies. These findings led us to study the distribution of multimerin within human endothelial cells. Multimerin was identified in vascular endothelium in situ. In cultured endothelial cells, multimerin was identified within round to rod-shaped, dense-core granules, some of which contained intragranular, longitudinally arranged tubules and resembled Weibel-Palade bodies. However, multimerin was found primarily in different structures than the Weibel-Palade body proteins von Willebrand factor and P-selectin. After stimulation with secretagogues, multimerin was observed to redistribute from intracellular structures to the external cellular membrane, without detectable accompanied secretion of multimerin into the culture media. In early passage endothelial cell cultures, multimerin was associated with extensive, fibrillary, extracellular matrix structures, in a different distribution than fibronectin. Although multimerin and von Willebrand factor are stored together in platelets, they are mainly found within different structures in endothelial cells, indicating that there are tissue-specific differences in the sorting of these soluble, multimeric proteins.


2016 ◽  
Vol 116 (07) ◽  
pp. 87-95 ◽  
Author(s):  
D'Andra Parker ◽  
Subia Tasneem ◽  
Richard Farndale ◽  
Dominique Bihan ◽  
J. Sadler ◽  
...  

SummaryMultimerin 1 (MMRN1) is a massive, homopolymeric protein that is stored in platelets and endothelial cells for activation-induced release. In vitro, MMRN1 binds to the outer surfaces of activated platelets and endothelial cells, the extracellular matrix (including collagen) and von Willebrand factor (VWF) to support platelet adhesive functions. VWF associates with MMRN1 at high shear, not static conditions, suggesting that shear exposes cryptic sites within VWF that support MMRN1 binding. Modified ELISA and surface plasmon resonance were used to study the structural features of VWF that support MMRN1 binding, and determine the affinities for VWF-MMRN1 binding. High shear microfluidic platelet adhesion assays determined the functional consequences for VWF-MMRN1 binding. VWF binding to MMRN1 was enhanced by shear exposure and ristocetin, and required VWF A1A2A3 region, specifically the A1 and A3 domains. VWF A1A2A3 bound to MMRN1 with a physiologically relevant binding affinity (KD: 2.0 ± 0.4 nM), whereas the individual VWF A1 (KD: 39.3 ± 7.7 nM) and A3 domains (KD: 229 ± 114 nM) bound to MMRN1 with lower affinities. VWF A1A2A3 was also sufficient to support the adhesion of resting platelets to MMRN1 at high shear, by a mechanism dependent on VWF-GPIbD binding. Our study provides new information on the molecular basis of MMRN1 binding to VWF, and its role in supporting platelet adhesion at high shear. We propose that at sites of vessel injury, MMRN1 that is released following activation of platelets and endothelial cells, binds to VWF A1A2A3 region to support platelet adhesion at arterial shear rates.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 698-698 ◽  
Author(s):  
Thomas A J Mckinnon ◽  
Richard D Starke ◽  
Kushani Ediriwickrema ◽  
Anna Maria Randi ◽  
Michael Laffan

Abstract Abstract 698 Von Willebrand Factor (VWF) is a large multimeric plasma glycoprotein essential for homeostasis, also involved in inflammation and angiogenesis. The majority of VWF is synthesised by endothelial cells (EC) and is either constitutively secreted or stored in Weibel-Palade bodies (WPB), ready to be released in response to endothelial stimulation. Several studies have shown that formation of WPB is dependent on the presence of VWF, and deletion of VWF in human umbilical vein EC (HUVEC) results in loss of WPB. Amongst the other proteins shown to co-localise to WPB is angiopoietin-2 (Ang2), a ligand of the receptor tyrosine kinase Tie-2. Ang2 regulates endothelial cell survival, vascular stability and maturation, by destabilizing quiescent endothelium and facilitating the response to inflammatory and angiogenic stimuli. VWF is required for storage of Ang2, and release of Ang-2 from EC is increased in VWF-deficient HUVEC. Recently, we have shown that VWF itself regulates angiogenesis, raising the hypothesis that some of the angiogenic activity of VWF may be mediated by Ang-2. In the present study we investigated the interaction between Ang2 and VWF. Binding analysis demonstrated that recombinant human Ang2 bound to purified plasma-derived VWF in a pH and calcium dependent manner, with optimal binding occurring at pH 6.5 and 10mM calcium, indicative of binding within the Golgi body. Generation of binding isotherms established that Ang2 bound to VWF with high affinity (KD∼3nM); furthermore binding affinity was not dependent on VWF conformation. Using an array of VWF constructs we determined that Ang2 bound predominantly to the VWF A1 domain, which also contains binding sites to the platelet receptor GPIb and extracellular matrix proteins. Co-immunoprecipitation experiments performed on TNFα- and ionomycin-stimulated HUVECs, to induce WPB exocytosis, confirmed that a portion of Ang2 remained bound to secreted VWF. Moreover, immunofluorescence staining of histamine-stimulated HUVECs to induce VWF release demonstrated the presence of Ang2 on VWF strings secreted from ECs. Finally we demonstrated that Ang2 bound to VWF was still able to interact with Tie-2. These data demonstrate that binding of Ang2 to VWF occurs within the cell; we propose that this is the mechanism mediating storage of Ang2 in WPB. Moreover, the finding that the Ang2-VWF interaction is preserved following secretion raises the intriguing possibility VWF may affect Ang2 function, possibly by localising Ang2 to the Tie 2 receptor under the shear forces experienced in flowing blood. Similarly, Ang-2 binding to VWF may modulate its interaction with receptors and extracellular matrix proteins, and ultimately influence the role of VWF in the angiogenic processes. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document