scholarly journals Leaf Nutritive Value Related to Tiller Development in Warm-Season Grasses

1997 ◽  
Vol 50 (2) ◽  
pp. 116 ◽  
Author(s):  
J. R. Hendrickson ◽  
L. E. Moser ◽  
K. J. Moore ◽  
S. S. Waller
2016 ◽  
Vol 108 (4) ◽  
pp. 1603-1613 ◽  
Author(s):  
Christine Gelley ◽  
Renata La Guardia Nave ◽  
Gary Bates

2014 ◽  
Vol 94 (7) ◽  
pp. 1139-1148 ◽  
Author(s):  
B. Biligetu ◽  
P. G. Jefferson ◽  
R. Muri ◽  
M. P. Schellenberg

Biligetu, B., Jefferson, P. G., Muri, R. and Schellenberg, M. P. 2014. Late summer forage yield, nutritive value, compatibility of warm-and cool-season grasses seeded with legumes in western Canada. Can. J. Plant Sci. 94: 1139–1148. In late summer and fall, quality and quantity of forage are important for weight gain by grazing animals in western Canada. The objective of this study was to evaluate forage nutritive value, dry matter (DM) yield, and compatibility of crested wheatgrass [Agropyron cristatum (L.) Gaertn.], meadow bromegrass (Bromus riparius Rehm.), green needle grass [Nasella viridula (Trin.) Barkworth], northern wheatgrass [Elymus lanceolatus (Scribn. & J. G. Sm.) Gould], western wheatgrass [Pascopyrum smithii (Rydb.) Barkworth & D.R. Dewey], Russian wildrye [Psathyrostachys juncea (Fisch.) Nevski], big bluestem (Andropogon gerardii Vitman), or switchgrass (Panicum virgatum L.) in eight grass monocultures, and their binary mixtures with alfalfa (Medicago sativa L.), sainfoin (Onobrychis viciifolia Scop.), or cicer-milkvetch (Astragalus cicer L.) harvested once in August or September. A field study was conducted over a 7-yr period from 1998 to 2004 near Swift Current (lat. 50°25'N, long. 107°44'W, 824 m elev.), SK, Canada, using a randomized complete block design. Forage DM yield was similar between August and September harvests (P>0.05). Binary mixtures of alfalfa–grass produced highest (P<0.05) DM yield ranging from 2449 to 2758 kg ha−1. The monoculture of crested wheatgrass (2143 kg ha−1), sainfoin with crested wheatgrass (2061 kg ha−1), and cicer-milkvetch with green needle grass (1838 kg ha−1) or cicer-milkvetch with western wheatgrass (1861 kg ha−1) produced the second highest (P<0.05) DM yields in the ranking. The two warm-season grasses produced the lowest (P>0.05) DM yields over the 7-yr period. Monocultures of green needle grass or northern wheatgrass had the highest acid detergent fiber (ADF) and neutral detergent fiber (NDF), while warm-season grasses with legumes had the lowest. Alfalfa with western wheatgrass and alfalfa with Russian wildrye had the highest crude protein (CP) concentrations. Monocultures of meadow bromegrass, crested wheatgrass, green needle grass, or cicer-milkvetch with meadow bromegrass, and sainfoin with crested wheatgrass had the lowest CP concentrations. In vitro organic matter digestibility (IVOMD) was greater for mixtures than for the grass monocultures. Concentration of Ca and P was greater for warm-season grasses than cool-season grasses. Alfalfa with western wheatgrass was the best combination considering yield, quality, and compatibility for deferred grazing in late summer and fall in the semiarid prairies. Tested warm-season grasses are not recommended for seeding as binary mixtures with legumes for southwestern Saskatchewan.


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1963
Author(s):  
Kathryn E. Ritz ◽  
Bradley J. Heins ◽  
Roger Moon ◽  
Craig Sheaffer ◽  
Sharon L. Weyers

The objective of this study was to compare the forage nutritive value of cool-season perennial grasses and legumes with that of warm-season annual grasses grazed by organic dairy cows. Two pasture systems were analyzed across the grazing season at an organic dairy in Morris, Minnesota. Pasture system 1 included perennial ryegrass (Lolium perenne L.), orchardgrass (Dactylis glomerata L.), meadow bromegrass (Bromus riparius Rehmann), meadow fescue (Schedonorus pratensis (Huds.) P. Beauv), alfalfa (Medicago sativa L.), white clover (Trifolium repens L.), red clover (Trifolium pratense L.), and chicory (Cichorium intybus L.). Pasture system 2 was a combination of system 1 and monocultures of warm-season grasses (sorghum-sudangrass (Sorghum bicolor [L.] Moench subsp. drummondii [Steud.]) and teff (Eragrostis tef L.)). Across the grazing season, forage yield was 39% greater for system 2 than system 1 due to greater forage yield during the summer. Neutral detergent fiber (NDF) and acid detergent fiber (ADF) were similar for cool-season and warm-season grasses. Warm-season grasses had greater forage yield during the summer months compared with cool-season grasses and legumes. The total tract NDF digestibility (TTNDFD) varied by month and year across the study for both pasture systems. Overall, weather may affect the forage nutritive value for both cool-season perennial grasses and legumes and warm-season annual grasses.


2021 ◽  
Author(s):  
John A. Guretzky ◽  
Keith R. Harmoney ◽  
Joseph L. Moyer ◽  
Jerry D. Volesky ◽  
Mitchell B. Stephenson

2017 ◽  
Vol 109 (5) ◽  
pp. 2136-2148 ◽  
Author(s):  
Michelle L. DeBoer ◽  
Craig C. Sheaffer ◽  
Amanda M. Grev ◽  
Devan N. Catalano ◽  
M. Scott Wells ◽  
...  

2020 ◽  
Vol 98 (Supplement_2) ◽  
pp. 28-28
Author(s):  
Jane A Parish ◽  
Kalisha C Yankey ◽  
Libby S Durst

Abstract Native grasses are touted for use in drought mitigation strategies for grazing cattle. It is important to determine how these forages compare in specific production environments to more widely used improved grasses such as bermudagrass [Cynodon dactylon (L.) Pers.] that they may replace as pasture. Native warm-season grasses including big bluestem (Andropogon gerardi Vitman), little bluestem (Andropogon scoparius), and indiangrass (Sorghastrum nutans L.) were evaluated against bermudagrass pastures in the Black Belt Prairie region of Mississippi for stocker cattle grazing. Objectives were to compare bermudagrass (BG), indiangrass (IG) and mixed-sward native warm-season grass (mix of big bluestem, little bluestem, and indiangrass) (NGMIX) pasture for forage nutritive value and steer ADG. Crossbred (Bos taurus) steers (n = 36 steers/year) were stratified by initial BW (339.7 ± 4.3 kg) to 2.02-ha pastures (3 replications) during 56-d grazing periods in June and July for 2 yr. Mean forage nutritive values on a DM basis were: BG [8.8% CP, 43.4% ADF, 67.3% NDF, 58.7% TDN, and 77 relative feed value (RFV)], IG (6.7% CP, 39.6% ADF, 68.3% NDF, 58.2% TDN, and 79 RFV) and MIXNG (7.3% CP, 40.5% ADF, 69.5% NDF, 58.1% TDN, and 77 RFV). A forage treatment x day x year effect existed (P &lt; 0.01) for each these nutritive values. There was no effect (P = 0.47) of forage treatment on steer ADG (BG: 0.4 ± 0.1 kg/d; IG: 0.5 ± 0.1 kg/d; NGMIX: 0.5 ± 0.1 kg/d). Thus, no net advantage or disadvantage in steer growth rates was observed due to forage species. Other factors such as forage establishment cost and animal stocking rates supported may be relevant to consider in decisions to replace bermudagrass with warm-season native grasses.


2015 ◽  
Vol 35 (5) ◽  
pp. 420-421
Author(s):  
M.L. Schultz ◽  
C.C. Sheaffer ◽  
D.N. Catalano ◽  
A.M. Grev ◽  
K.L. Martinson

Sign in / Sign up

Export Citation Format

Share Document