Experimental Evidence for the Rapid Evolution of Behavioral Canalization in Natural Populations

2009 ◽  
Vol 174 (3) ◽  
pp. 434
Author(s):  
Edgell ◽  
Lynch ◽  
Trussell ◽  
Palmer
2009 ◽  
Vol 174 (3) ◽  
pp. 434-440 ◽  
Author(s):  
Timothy C. Edgell ◽  
Brian R. Lynch ◽  
Geoffrey C. Trussell ◽  
A. Richard Palmer

2019 ◽  
Vol 36 (8) ◽  
pp. 1686-1700 ◽  
Author(s):  
Covadonga Vara ◽  
Laia Capilla ◽  
Luca Ferretti ◽  
Alice Ledda ◽  
Rosa A Sánchez-Guillén ◽  
...  

Abstract One of the major challenges in evolutionary biology is the identification of the genetic basis of postzygotic reproductive isolation. Given its pivotal role in this process, here we explore the drivers that may account for the evolutionary dynamics of the PRDM9 gene between continental and island systems of chromosomal variation in house mice. Using a data set of nearly 400 wild-caught mice of Robertsonian systems, we identify the extent of PRDM9 diversity in natural house mouse populations, determine the phylogeography of PRDM9 at a local and global scale based on a new measure of pairwise genetic divergence, and analyze selective constraints. We find 57 newly described PRDM9 variants, this diversity being especially high on Madeira Island, a result that is contrary to the expectations of reduced variation for island populations. Our analysis suggest that the PRDM9 allelic variability observed in Madeira mice might be influenced by the presence of distinct chromosomal fusions resulting from a complex pattern of introgression or multiple colonization events onto the island. Importantly, we detect a significant reduction in the proportion of PRDM9 heterozygotes in Robertsonian mice, which showed a high degree of similarity in the amino acids responsible for protein–DNA binding. Our results suggest that despite the rapid evolution of PRDM9 and the variability detected in natural populations, functional constraints could facilitate the accumulation of allelic combinations that maintain recombination hotspot symmetry. We anticipate that our study will provide the basis for examining the role of different PRDM9 genetic backgrounds in reproductive isolation in natural populations.


2010 ◽  
Vol 278 (1703) ◽  
pp. 233-238 ◽  
Author(s):  
Rowan D. H. Barrett ◽  
Antoine Paccard ◽  
Timothy M. Healy ◽  
Sara Bergek ◽  
Patricia M. Schulte ◽  
...  

Climate change is predicted to lead to increased average temperatures and greater intensity and frequency of high and low temperature extremes, but the evolutionary consequences for biological communities are not well understood. Studies of adaptive evolution of temperature tolerance have typically involved correlative analyses of natural populations or artificial selection experiments in the laboratory. Field experiments are required to provide estimates of the timing and strength of natural selection, enhance understanding of the genetics of adaptation and yield insights into the mechanisms driving evolutionary change. Here, we report the experimental evolution of cold tolerance in natural populations of threespine stickleback fish ( Gasterosteus aculeatus ). We show that freshwater sticklebacks are able to tolerate lower minimum temperatures than marine sticklebacks and that this difference is heritable. We transplanted marine sticklebacks to freshwater ponds and measured the rate of evolution after three generations in this environment. Cold tolerance evolved at a rate of 0.63 haldanes to a value 2.5°C lower than that of the ancestral population, matching values found in wild freshwater populations. Our results suggest that cold tolerance is under strong selection and that marine sticklebacks carry sufficient genetic variation to adapt to changes in temperature over remarkably short time scales.


2019 ◽  
Author(s):  
P. Brand ◽  
I. A. Hinojosa-Díaz ◽  
R. Ayala ◽  
M. Daigle ◽  
C. L. Yurrita Obiols ◽  
...  

Speciation is facilitated by the evolution of reproductive barriers that prevent or reduce hybridization among diverging lineages. However, the genetic mechanisms that control the evolution of reproductive barriers remain elusive, particularly in natural populations. We identify a gene associated with divergence in chemical courtship signaling in a pair of nascent orchid bee lineages. Male orchid bees collect perfume compounds from flowers and other sources to subsequently expose during courtship display, thereby conveying information on species identity. We show that these two lineages exhibit differentiated perfume blends and that this change is associated with the rapid evolution of a single odorant receptor gene. Our study suggests that reproductive isolation evolved through divergence of a major barrier gene involved in chemically mediated pre-mating isolation via genetic coupling.


Genetics ◽  
2018 ◽  
Vol 211 (3) ◽  
pp. 943-961 ◽  
Author(s):  
John K. Kelly ◽  
Kimberly A. Hughes

We develop analytical and simulation tools for evolve-and-resequencing experiments and apply them to a new study of rapid evolution in Drosophila simulans. Likelihood test statistics applied to pooled population sequencing data suggest parallel evolution of 138 SNPs across the genome. This number is reduced by orders of magnitude from previous studies (thousands or tens of thousands), owing to differences in both experimental design and statistical analysis. Whole genome simulations calibrated from Drosophila genetic data sets indicate that major features of the genome-wide response could be explained by as few as 30 loci under strong directional selection with a corresponding hitchhiking effect. Smaller effect loci are likely also responding, but are below the detection limit of the experiment. Finally, SNPs showing strong parallel evolution in the experiment are intermediate in frequency in the natural population (usually 30–70%) indicative of balancing selection in nature. These loci also exhibit elevated differentiation among natural populations of D. simulans, suggesting environmental heterogeneity as a potential balancing mechanism.


2015 ◽  
Author(s):  
Jean-Baptiste Leducq ◽  
Lou Nielly-Thibault ◽  
Guillaume Charron ◽  
Chris Eberlein ◽  
Jukka-Pekka Verta ◽  
...  

Hybridization is recognized as a powerful mechanism of speciation and a driving force in generating biodiversity. However, only few multicellular species, limited to a handful of plants and animals, have been shown to fulfill all the criteria of homoploid hybrid speciation. This lack of evidence could lead to the misconception that speciation by hybridization has a limited role in eukaryotes, particularly in single-celled organisms. Laboratory experiments have revealed that fungi such as budding yeasts can rapidly develop reproductive isolation and novel phenotypes through hybridization, showing that in principle homoploid speciation could occur in nature. Here we report a case of homoploid hybrid speciation in natural populations of the budding yeast Saccharomyces paradoxus inhabiting the North American forests. We show that the rapid evolution of chromosome architecture and an ecological context that led to secondary contact between nascent species drove the formation of an incipient hybrid species with a potentially unique ecological niche.


2011 ◽  
Vol 278 (1719) ◽  
pp. 2832-2839 ◽  
Author(s):  
Rebecca D. Schulte ◽  
Carsten Makus ◽  
Barbara Hasert ◽  
Nico K. Michiels ◽  
Hinrich Schulenburg

Coevolving hosts and parasites can adapt to their local antagonist. In studies on natural populations, the observation of local adaptation patterns is thus often taken as indirect evidence for coevolution. Based on this approach, coevolution was previously inferred from an overall pattern of either parasite or host local adaptation. Many studies, however, failed to detect such a pattern. One explanation is that the studied system was not subject to coevolution. Alternatively, coevolution occurred, but remained undetected because it took different routes in different populations. In some populations, it is the host that is locally adapted, whereas in others it is the parasite, leading to the absence of an overall local adaptation pattern. Here, we test for overall as well as population-specific patterns of local adaptation using experimentally coevolved populations of the nematode Caenorhabditis elegans and its bacterial microparasite Bacillus thuringiensis . Furthermore, we assessed the importance of random interaction effects using control populations that evolved in the absence of the respective antagonist. Our results demonstrate that experimental coevolution produces distinct local adaptation patterns in different replicate populations, including host, parasite or absence of local adaptation. Our study thus provides experimental evidence of the predictions of the geographical mosaic theory of coevolution, i.e. that the interaction between parasite and host varies across populations.


Genetics ◽  
1996 ◽  
Vol 143 (4) ◽  
pp. 1675-1688 ◽  
Author(s):  
Michael F Palopoli ◽  
Chung-I Wu

Abstract Segregation Distorter (SD) is a system of meiotic drive found in natural populations of Drosophila melanogaster. Males heterozygous for an SD second chromosome and a normal homologue (SD  +) produce predominantly SD-bearing sperm. The coadapted gene complex responsible for this transmission advantage spans the second chromosome centromere, consisting of three major and several minor interacting loci. To investigate the evolutionary history of this system, we surveyed levels of polymorphism and divergence at six genes that together encompass this pericentromeric region and span seven map units. Interestingly, there was no discernible divergence between SD and SD  + chromosomes for any of these molecular markers. Furthermore, SD chromosomes harbored much less polymorphism than did SD  + chromosomes. The results suggest that the SD system evolved recently, swept to appreciable frequencies worldwide, and carried with it the entire second chromosome centromeric region (roughly 10% of the genome). Despite its well-documented genetic complexity, this coadapted system appears to have evolved on a time scale that is much shorter than can be gauged using nucleotide substitution data. Finally, the large genomic region hitchhiking with SD indicates that a multilocus, epistatically selected system could affect the levels of DNA polymorphism observed in regions of reduced recombination.


Sign in / Sign up

Export Citation Format

Share Document