Characterizing Elite Midden Deposits at Moundville

2004 ◽  
Vol 69 (2) ◽  
pp. 304-321 ◽  
Author(s):  
Vernon James Knight

Insufficient attention has been paid to differences among elite archaeological contexts in middle-range or chiefdom societies. At Moundville, a major Mississippian center in Alabama, midden and feature-fill deposits attributed to elite behavior have been excavated in several areas. Deposits on Mounds Q and G dating to the Moundville II and III phases (ca. A.D. 1260–1450) are similar in that they incorporate abundant domestic debris associated with structures on mound summits. On both mounds, food remains show evidence of provisioning and the consumption of small-scale meals rather than feasting. However, the two contexts differ in the occurrence of evidence for skilled crafting and the display of human skeletal remains. At Mound Q, skilled crafting is abundantly attested, employing local and nonlocal raw materials. Display goods were routinely handled, and pigment processing and use were important. Burials were rarely made, but fragmentary human bone is scattered throughout, emphasizing portions of the skeleton consistent with display. In contrast, elite contexts on Mound G show little or no evidence of crafting, pigment use, and bone handling.

2016 ◽  
Vol 38 (1) ◽  
pp. 33-49 ◽  
Author(s):  
Dawn McLaren ◽  
Donald Wilson ◽  
Rob Engl ◽  
Alan Duffy ◽  
Kathleen MacSweeney ◽  
...  

AOC Archaeology Group undertook the excavation of a previously unknown Bronze Age cist, located in a field close to Kilkeddan Farm, Argyll & Bute, during September 2005 under the Historic Scotland call-off contract for human remains. The cist was found to contain poorly surviving unburnt human skeletal remains along with a finely decorated tripartite Food Vessel and a flint knife. The incomplete and fragmentary condition of the skeleton suggests that the human remains were disarticulated at the time of deposition. Radiocarbon dates obtained from the human bone and associated charcoal confirms an early Bronze Age date for the burial.


Antiquity ◽  
2002 ◽  
Vol 76 (292) ◽  
pp. 512-517 ◽  
Author(s):  
Eileen M. Murphy

IntroductionThe archaeological study of human skeletal remains has been undertaken in Ireland since the mid 19th century. This paper examines the development of human bone studies in Ireland up until the present day, reviews the various approaches which have been adopted, and takes a look at the formal structure of the discipline within an Irish contcxt. The objective is to provide an overview of the study of archaeological human skeletal remains in Ireland from the 19th century through to modern times.


1988 ◽  
Vol 20 (1) ◽  
pp. 37-48 ◽  
Author(s):  
L. Panneerselvam

In order to reduce the demand for the forest based raw materials by the organised industrial sectors like the large integrated pulp and paper mills, the Government of India started promoting several small-scale pulp and paper mills based on non-wood agricultural residue raw materials. However promotion of these small mills has created another environmental problem i.e. severe water pollution due to non-recovery of chemicals. Because of the typical characteristics like high silica content etc. of the black liquor produced and the subsequent high capital investment needed for a recovery system, it is not economically feasible for the small Indian mills to recover the chemicals. While the quantity of wastewater generated per tonne of paper produced by a small mill is same as from a large integrated pulp and paper mill with a chemical recovery system, their BOD load is four times higher, due to non recovery of chemicals. However the existing wastewater disposal standards are uniform for large and small mills for e.g. 30 mg BOD/l. To meet these standards, the small mills have to install a capital intensive wastewater treatment plant with heavy recurring operating costs. Therefore the feasible alternative is to implement various pollution abatement measures, with the objective of not only reducing the fibre/chemical loss but also to reduce the investment and operating costs of the final wastewater treatment system. To illustrate this approach, a case study on water pollution abatement and control in a 10 TPD mill, will be discussed.


2011 ◽  
Vol 57 (3) ◽  
pp. 706-712 ◽  
Author(s):  
Cynthia Rucinski ◽  
Ayda L. Malaver ◽  
Emilio J. Yunis ◽  
Juan J. Yunis

2021 ◽  
Vol 13 (7) ◽  
Author(s):  
Alvie Loufouma Mbouaka ◽  
Michelle Gamble ◽  
Christina Wurst ◽  
Heidi Yoko Jäger ◽  
Frank Maixner ◽  
...  

AbstractAlthough malaria is one of the oldest and most widely distributed diseases affecting humans, identifying and characterizing its presence in ancient human remains continue to challenge researchers. We attempted to establish a reliable approach to detecting malaria in human skeletons using multiple avenues of analysis: macroscopic observations, rapid diagnostic tests, and shotgun-capture sequencing techniques, to identify pathological changes, Plasmodium antigens, and Plasmodium DNA, respectively. Bone and tooth samples from ten individuals who displayed skeletal lesions associated with anaemia, from a site in southern Egypt (third to sixth centuries AD), were selected. Plasmodium antigens were detected in five of the ten bone samples, and traces of Plasmodium aDNA were detected in six of the twenty bone and tooth samples. There was relatively good synchronicity between the biomolecular findings, despite not being able to authenticate the results. This study highlights the complexity and limitations in the conclusive identification of the Plasmodium parasite in ancient human skeletons. Limitations regarding antigen and aDNA preservation and the importance of sample selection are at the forefront of the search for malaria in the past. We confirm that, currently, palaeopathological changes such as cribra orbitalia are not enough to be certain of the presence of malaria. While biomolecular methods are likely the best chance for conclusive identification, we were unable to obtain results which correspond to the current authentication criteria of biomolecules. This study represents an important contribution in the refinement of biomolecular techniques used; also, it raises new insight regarding the consistency of combining several approaches in the identification of malaria in past populations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. P. M. Marques ◽  
D. Gonçalves ◽  
A. P. Mamede ◽  
T. Coutinho ◽  
E. Cunha ◽  
...  

AbstractComplementary optical and neutron-based vibrational spectroscopy techniques (Infrared, Raman and inelastic neutron scattering) were applied to the study of human bones (femur and humerus) burned simultaneously under either aerobic or anaerobic conditions, in a wide range of temperatures (400 to 1000 °C). This is the first INS study of human skeletal remains heated in an oxygen-deprived atmosphere. Clear differences were observed between both types of samples, namely the absence of hydroxyapatite’s OH vibrational bands in bone burned anaerobically (in unsealed containers), coupled to the presence of cyanamide (NCNH2) and portlandite (Ca(OH)2) in these reductive conditions. These results are expected to allow a better understanding of the heat effect on bone´s constituents in distinct environmental settings, thus contributing for an accurate characterisation of both forensic and archaeological human skeletal remains found in distinct scenarios regarding oxygen availability.


2016 ◽  
Author(s):  
A. Ribeiro ◽  
C. Vilarinho ◽  
J. Araújo ◽  
J. Carvalho

The increasing of world population, industrialization and global consuming, existing market products existed in the along with diversification of raw materials, are responsible for an exponential increase of wastes. This scenario represents loss of resources and ultimately causes air, soils and water pollution. Therefore, proper waste management is currently one of the major challenges faced by modern societies. Textile industries represents, in Portugal, almost 10% of total productive transforming sector and 19% of total employments in the sector composed by almost 7.000 companies. One of the main environmental problems of textile industries is the production of significant quantities of wastes from its different processing steps. According to the Portuguese Institute of Statistics (INE) these industries produce almost 500.000 tons of wastes each year, with the textile cotton waste (TCW) being the most expressive. It was estimated that 4.000 tons of TCW are produced each year in Portugal. In this work an integrated TCW valorisation procedure was evaluated, firstly by its thermal and energetic valorisation with slow pyrolysis followed by the utilization of biochar by-product, in lead and chromium synthetic wastewater decontamination. Pyrolysis experiments were conducted in a small scale rotating pyrolysis reactor with 0.1 m3 of total capacity. Results of pyrolysis experiments showed the formation of 0,241 m3 of biogas for each kilogram of TCW. Results also demonstrated that the biogas is mostly composed by hydrogen (22%), methane (14 %), carbon monoxide (20%) and carbon dioxide (12%), which represents a total high calorific value of 12.3 MJ/Nm3. Regarding biochar, results of elemental analysis demonstrated a high percentage of carbon driving its use as low cost adsorbent. Adsorption experiments were conducted with lead and chromium synthetic wastewaters (25, 50 and 100 mg L−1) in batch vessels with controlled pH. It was evaluated the behaviour of adsorption capacity and removal rate of each metal during 120 minutes of contact time using 5, 10 and 50 g L−1 of adsorbent dosage. Results indicated high affinity of adsorbent with each tested metal with 78% of removal rate in chromium and 95% in lead experiments. This suggests that biochar from TCW pyrolysis may be appropriated to wastewaters treatment, with high contents of heavy metals and it can be an effective alternative to activated carbon.


Sign in / Sign up

Export Citation Format

Share Document