The Seven Functions of Nouns; Prepositions followed by the “Object” Function (Ossa Encounter 6)

2021 ◽  
pp. 58-74
Keyword(s):  
2021 ◽  
Vol 12 (3) ◽  
pp. 95
Author(s):  
Weiwei Sun ◽  
Zheng Zhang

Electric vehicle cell industry is an emerging area with fierce competition on technical innovation, in which the patent holder can choose different innovation diffusion options to maximize the return; however, the strategy is unclear in certain scenarios. We tried to explain the question of how to maximize the patent holder’s return by appropriate patent license strategy to promote EV cell innovation diffusion, when competition and patent licensing relationship exist in the supply chain. A multistage and multichannel diffusion model of EV cell comprising the patent holder, EV cell producer and EV producers is developed; the evolutionary game is analyzed considering the competition among same stage players and patent licensing relationship among different stage players; and an optimization algorithm is introduced to find the maximum weighted object function of the patent holder. We established the multistage and multichannel diffusion model and found a nonlinear complex relationship between patent holder object function and the key factors including patent royalty pricing and innovation advantage coefficient; in addition, an optimization algorithm is developed based on adopters’ decision-making related with competition and patent licensing.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 916 ◽  
Author(s):  
Wen Cao ◽  
Chunmei Liu ◽  
Pengfei Jia

Aroma plays a significant role in the quality of citrus fruits and processed products. The detection and analysis of citrus volatiles can be measured by an electronic nose (E-nose); in this paper, an E-nose is employed to classify the juice which is stored for different days. Feature extraction and classification are two important requirements for an E-nose. During the training process, a classifier can optimize its own parameters to achieve a better classification accuracy but cannot decide its input data which is treated by feature extraction methods, so the classification result is not always ideal. Label consistent KSVD (L-KSVD) is a novel technique which can extract the feature and classify the data at the same time, and such an operation can improve the classification accuracy. We propose an enhanced L-KSVD called E-LCKSVD for E-nose in this paper. During E-LCKSVD, we introduce a kernel function to the traditional L-KSVD and present a new initialization technique of its dictionary; finally, the weighted coefficients of different parts of its object function is studied, and enhanced quantum-behaved particle swarm optimization (EQPSO) is employed to optimize these coefficients. During the experimental section, we firstly find the classification accuracy of KSVD, and L-KSVD is improved with the help of the kernel function; this can prove that their ability of dealing nonlinear data is improved. Then, we compare the results of different dictionary initialization techniques and prove our proposed method is better. Finally, we find the optimal value of the weighted coefficients of the object function of E-LCKSVD that can make E-nose reach a better performance.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1340
Author(s):  
Wei Chien ◽  
Chien-Ching Chiu ◽  
Po-Hsiang Chen ◽  
Yu-Ting Cheng ◽  
Eng Hock Lim ◽  
...  

Multiple objective function with beamforming techniques by algorithms have been studied for the Simultaneous Wireless Information and Power Transfer (SWIPT) technology at millimeter wave. Using the feed length to adjust the phase for different objects of SWIPT with Bit Error Rate (BER) and Harvesting Power (HP) are investigated in the broadband communication. Symmetrical antenna array is useful for omni bearing beamforming adjustment with multiple receivers. Self-Adaptive Dynamic Differential Evolution (SADDE) and Asynchronous Particle Swarm Optimization (APSO) are used to optimize the feed length of the antenna array. Two different object functions are proposed in the paper. The first one is the weighting factor multiplying the constraint BER and HP plus HP. The second one is the constraint BER multiplying HP. Simulations show that the first object function is capable of optimizing the total harvesting power under the BER constraint and APSO can quickly converges quicker than SADDE. However, the weighting for the final object function requires a pretest in advance, whereas the second object function does not need to set the weighting case by case and the searching is more efficient than the first one. From the numerical results, the proposed criterion can achieve the SWIPT requirement. Thus, we can use the novel proposed criterion (the second criterion) to optimize the SWIPT problem without testing the weighting case by case.


Author(s):  
Stevo Lukić ◽  
Mirjana Simić

Non-Line-Of-Sight conditions pose a major challenge to cellular radio positioning. Such conditions, when the direct Line-Of-Sight path is blocked, result in additional propagation delay for the signal, additional attenuation, and an angular bias. Therefore,many researchers have proposed various algorithms to mitigate the measured error caused by this phenomenon. This paper presentsthe procedure for improving accuracy of determining the mobile station location in cellular radio networks in Non-Line-of-Sightpropagation environment, based on the Time Of Arrival oriented estimator using the Particle Swarm Optimization algorithm. Incomputer science, Particle Swarm Optimization is an evolutionary computational method that optimizes a problem by iteratively tryingto improve a candidate solution with regard to a given measure of quality. The proposed algorithm uses the repeating Time-Of-Arrivaltest measurements using the four base stations and for simulation selects the measurement combination that give the smallest regionenclosed by the overlap of four circles. In this way, the smallest intersect area of the four Time-Of-Arrival circles is obtained, andtherefore the smallest positioning error. After that, we consider the complete problem as a combinatorial optimization problem withthe corresponding object function that represents the nonlinear relationship between the intersection of the four circles and the mobilestation location. The Particle Swarm Optimization finds the optimal solution of the object function and efficiently determines themobile station location. The simulation results show that the proposed method outperforms conventional algorithms such as theWeighted Least Squares and the Levenberq-Marquardt method.


Author(s):  
Bodo Geier ◽  
Rolf Zimmermann

Abstract The great number of possible stacking orders to form laminates suggests to apply optimization, more frequently than usual, in the design of structures made of composite materials. One of the columns upon which optimization of structures is built is the mathematical search procedure for locating a minimum (or maximum) of a constrained function. Efficient algorithms will require the evaluation of derivatives of the object function as well as of the constraints. In that context the sensitivities of laminate stiffness matrices may be required. In order to meet such a requirement the derivatives with respect to both ply thicknesses and ply angles, of laminate stiffnesses, including transverse shear stiffness, will be presented in this report.


2010 ◽  
Vol 11 (3) ◽  
pp. 269-292 ◽  
Author(s):  
Shifra Wohlgelernter ◽  
Gil Diesendruck ◽  
Lori Markson
Keyword(s):  

2011 ◽  
Vol 30 (6) ◽  
pp. 1102-1114 ◽  
Author(s):  
Rajiv Ranganathan ◽  
Mei-Hua Lee ◽  
Amber J. Brown ◽  
Karl M. Newell

1996 ◽  
Vol 84 (11) ◽  
pp. 1640-1656 ◽  
Author(s):  
L. Stark ◽  
K. Bowyer ◽  
A. Hoover ◽  
D.B. Goldgof

Sign in / Sign up

Export Citation Format

Share Document