Indirect Detection of Planets around Other Stars

2021 ◽  
pp. 197-220
Keyword(s):  
2018 ◽  
Author(s):  
Yong Cao ◽  
Mark T. McDermott

<div> <div> <div> <p>Quantitative measurement of small-molecule metabolites is now emerging as an effective way to link the metabolite profile to disease state. Surface plasmon resonance (SPR) is a sensing platform that has demonstrated applicability for a large range of biomolecules. However, direct detection of small molecules with SPR challenges the refractive index based detection mechanism. Herein, we utilized an indirect detection format and developed an inhibition immunoassay for the quantitative measurement of 17β-estradiol (E2) using SPR. One competitor, BSA-E2 conjugate, was immobilized to the SPR chip via the reaction between the primary amino group of the conjugate and the succinimide group (NHS) introduced by the formation of a thiol-NHS monolayer on gold surface. Free E2 molecules compete with BSA-E2 on chip surface for binding sites provided by a monoclonal anti-E2 antibody. It was found the binding affinity of the antibody to BSA-E2 conjugate increases with decreasing surface coverage of BSA-E2 conjugate. Under optimal conditions, a sigmoidal calibration curve with a negative slope and a dynamic range from 10 pM to 2 nM was generated. The detection limit of the immunoassay is estimated to be 0.3 pM. Moreover, the immunoassay exhibits high specificity for E2 detection using estrone (E1) as a potential interference.</p></div></div></div>


Infection ◽  
2001 ◽  
Vol 29 (3) ◽  
pp. 113-118 ◽  
Author(s):  
R. Bollmann ◽  
S. Engel ◽  
R. Petzoldt ◽  
U.B. Göbel

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Fabiola Fortuna ◽  
Pablo Roig ◽  
José Wudka

Abstract We analyze interactions between dark matter and standard model particles with spin one mediators in an effective field theory framework. In this paper, we are considering dark particles masses in the range from a few MeV to the mass of the Z boson. We use bounds from different experiments: Z invisible decay width, relic density, direct detection experiments, and indirect detection limits from the search of gamma-ray emissions and positron fluxes. We obtain solutions corresponding to operators with antisymmetric tensor mediators that fulfill all those requirements within our approach.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Andrzej Hryczuk ◽  
Maxim Laletin

Abstract We study a novel dark matter production mechanism based on the freeze-in through semi-production, i.e. the inverse semi-annihilation processes. A peculiar feature of this scenario is that the production rate is suppressed by a small initial abundance of dark matter and consequently creating the observed abundance requires much larger coupling values than for the usual freeze-in. We provide a concrete example model exhibiting such production mechanism and study it in detail, extending the standard formalism to include the evolution of dark matter temperature alongside its number density and discuss the importance of this improved treatment. Finally, we confront the relic density constraint with the limits and prospects for the dark matter indirect detection searches. We show that, even if it was never in full thermal equilibrium in the early Universe, dark matter could, nevertheless, have strong enough present-day annihilation cross section to lead to observable signals.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Roberto A. Lineros ◽  
Mathias Pierre

Abstract We explore the connection between Dark Matter and neutrinos in a model inspired by radiative Type-II seessaw and scotogenic scenarios. In our model, we introduce new electroweakly charged states (scalars and a vector-like fermion) and impose a discrete ℤ2 symmetry. Neutrino masses are generated at the loop level and the lightest ℤ2-odd neutral particle is stable and it can play the role of a Dark Matter candidate. We perform a numerical analysis of the model showing that neutrino masses and flavour structure can be reproduced in addition to the correct dark matter density, with viable DM masses from 700 GeV to 30 TeV. We explore direct and indirect detection signatures and show interesting detection prospects by CTA, Darwin and KM3Net and highlight the complementarity between these observables.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Zexi Hu ◽  
Chengfeng Cai ◽  
Yi-Lei Tang ◽  
Zhao-Huan Yu ◽  
Hong-Hao Zhang

Abstract We propose a vector dark matter model with an exotic dark SU(2) gauge group. Two Higgs triplets are introduced to spontaneously break the symmetry. All of the dark gauge bosons become massive, and the lightest one is a viable vector DM candidate. Its stability is guaranteed by a remaining Z2 symmetry. We study the parameter space constrained by the Higgs measurement data, the dark matter relic density, and direct and indirect detection experiments. We find numerous parameter points satisfying all the constraints, and they could be further tested in future experiments. Similar methodology can be used to construct vector dark matter models from an arbitrary SO(N) gauge group.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Christian W. Bauer ◽  
Nicholas L. Rodd ◽  
Bryan R. Webber

Abstract We compute the decay spectrum for dark matter (DM) with masses above the scale of electroweak symmetry breaking, all the way to the Planck scale. For an arbitrary hard process involving a decay to the unbroken standard model, we determine the prompt distribution of stable states including photons, neutrinos, positrons, and antiprotons. These spectra are a crucial ingredient in the search for DM via indirect detection at the highest energies as being probed in current and upcoming experiments including IceCube, HAWC, CTA, and LHAASO. Our approach improves considerably on existing methods, for instance, we include all relevant electroweak interactions.


Sign in / Sign up

Export Citation Format

Share Document