The Cyclic Universe

2020 ◽  
Author(s):  
Howard Burton ◽  
Roger Penrose
Keyword(s):  
2007 ◽  
Vol 22 (34) ◽  
pp. 2587-2592 ◽  
Author(s):  
PAUL H. FRAMPTON

We address two questions about the past for infinitely cyclic cosmology. The first is whether it can contain an infinite length null geodesic into the past in view of the Borde–Guth–Vilenkin (BGV) "no-go" theorem, The second is whether, given that a small fraction of spawned universes fail to cycle, there is an adequate probability for a successful universe after an infinite time. We give positive answers to both questions and then show that in infinite cyclicity the total number of universes has been infinite for an arbitrarily long time.


2019 ◽  
Vol 35 (08) ◽  
pp. 2030001
Author(s):  
Dragan Slavkov Hajdukovic

The aim of this brief review is twofold. First, we give an overview of the unprecedented experimental efforts to measure the gravitational acceleration of antimatter; with antihydrogen, in three competing experiments at CERN (AEGIS, ALPHA and GBAR), and with muonium and positronium in other laboratories in the world. Second, we present the 21st Century’s attempts to develop a new model of the Universe with the assumed gravitational repulsion between matter and antimatter; so far, three radically different and incompatible theoretical paradigms have been proposed. Two of these three models, Dirac–Milne Cosmology (that incorporates CPT violation) and the Lattice Universe (based on CPT symmetry), assume a symmetric Universe composed of equal amounts of matter and antimatter, with antimatter somehow “hidden” in cosmic voids; this hypothesis produced encouraging preliminary results. The heart of the third model is the hypothesis that quantum vacuum fluctuations are virtual gravitational dipoles; for the first time, this hypothesis makes possible and inevitable to include the quantum vacuum as a source of gravity. Standard Model matter is considered as the only content of the Universe, while phenomena usually attributed to dark matter and dark energy are explained as the local and global effects of the gravitational polarization of the quantum vacuum by the immersed baryonic matter. An additional feature is that we might live in a cyclic Universe alternatively dominated by matter and antimatter. In about three years, we will know if there is gravitational repulsion between matter and antimatter; a discovery that can forever change our understanding of the Universe.


2007 ◽  
Vol 16 (04) ◽  
pp. 681-686 ◽  
Author(s):  
R. MURDZEK

In this contribution, we show that the cyclic universe models naturally emerge from torus geometry in a braneworld scenario. The Riemannian metric on torus and the fundamental tensors of the General Relativity are derived. A discussion on particular aspects of this model is also given.


2019 ◽  
Vol 97 (10) ◽  
pp. 1075-1082 ◽  
Author(s):  
Nasr Ahmed ◽  
Sultan Z. Alamri

A new kind of evolution for cyclic models in which the Hubble parameter oscillates and remains positive has been explored in a specific f(R, T) gravity reconstruction. A singularity-free cyclic universe with negative varying cosmological constant has been obtained, which supports the role suggested for negative Λ in stopping the eternal acceleration. The cosmological solutions have been obtained for the case of a flat universe, supported by observations. The cosmic pressure grows without singular values; it is positive during the early-time decelerated expansion and negative during the late-time accelerating epoch. The time-varying equation of state parameter ω(t) shows quintom behavior and is restricted to the range –2.25 ≤ ω(t) ≲ 1/3. The validity of the classical linear energy conditions and the sound speed causality condition has been studied. The non-conventional mechanism of negative cosmological constant that are expected to address the late-time acceleration has been discussed.


2009 ◽  
Vol 24 (15) ◽  
pp. 1237-1246 ◽  
Author(s):  
HUA-HUI XIONG ◽  
TAOTAO QIU ◽  
YI-FU CAI ◽  
XINMIN ZHANG

In this paper, we study the possibility of model building of cyclic universe with Quintom matter in the framework of Loop Quantum Cosmology. After a general demonstration, we provide two examples, one with double-fluid and another double-scalar field, to show how such a scenario is obtained. Analytical and numerical calculations are both presented in the paper.


2007 ◽  
Vol 28 (2-3) ◽  
pp. 67-99 ◽  
Author(s):  
Jayant V. Narlikar ◽  
Geoffrey Burbidge ◽  
R. G. Vishwakarma
Keyword(s):  

2016 ◽  
Vol 757 ◽  
pp. 247-250 ◽  
Author(s):  
Stephon Alexander ◽  
Sam Cormack ◽  
Marcelo Gleiser
Keyword(s):  

Science ◽  
2002 ◽  
Vol 296 (5572) ◽  
pp. 1361d-1361
Keyword(s):  

Author(s):  
Mohammed B. Al-Fadhli

The recent Planck Legacy release confirmed the presence of an enhanced lensing amplitude in the cosmic microwave background (CMB) power spectra, which prefers a positively curved early Universe with a confidence level exceeding 99%. In this study, the pre-existing curvature is incorporated to extend the field equations where the derived wavefunction of the Universe is utilised to model Universe evolution with reference to the scale factor of the early Universe and its radius of curvature upon the emission of the CMB. The wavefunction reveals both positive and negative solutions, implying that matter and antimatter of early Universe plasma evolved in opposite directions as distinct Universe sides, corroborating the axis of CMB. The wavefunction indicates that a nascent hyperbolic expansion away from early plasma is followed by a first phase of decelerating expansion during the first 10 Gyr, and then, a second phase of accelerating expansion in reverse directions, whereby both sides free-fall towards each other under gravitational acceleration. The predicted conformal curvature evolution demonstrates the fast orbital speed of outer stars owing to external fields exerted on galaxies as they travel through conformally curved space-time. Finally, the wavefunction predicts an eventual time-reversal phase comprising rapid spatial contraction that culminates in a Big Crunch, signalling a cyclic Universe. These findings show that early plasma could be separated and evolved into distinct sides of the Universe that collectively inducing its evolution, physically explaining the effects attributed to dark energy and dark matter.


Sign in / Sign up

Export Citation Format

Share Document