Life History Tradeoffs in Avian Clutch Size:

Author(s):  
Jon Hess
2020 ◽  
Author(s):  
Gregory F Albery ◽  
Alison Morris ◽  
Sean Morris ◽  
Fiona Kenyon ◽  
Daniel H Nussey ◽  
...  

2018 ◽  
Vol 49 (2) ◽  
pp. jav-01531 ◽  
Author(s):  
Emily L. Weiser ◽  
Stephen C. Brown ◽  
Richard B. Lanctot ◽  
H. River Gates ◽  
Kenneth F. Abraham ◽  
...  

1991 ◽  
Vol 69 (10) ◽  
pp. 2540-2547 ◽  
Author(s):  
Nathaniel T. Wheelwright ◽  
Joanna Leary ◽  
Caragh Fitzgerald

We investigated the effect of brood size on nestling growth and survival, parental survival, and future fecundity in tree swallows (Tachycineta bicolor) over a 4-year period (1987–1990) in an effort to understand whether reproductive trade-offs limit clutch size in birds. In addition to examining naturally varying brood sizes in a population on Kent Island, New Brunswick, Canada, we experimentally modified brood sizes, increasing or decreasing the reproductive burdens of females by two offspring. Unlike previous studies, broods of the same females were enlarged or reduced in up to 3 successive years in a search for evidence of cumulative costs of reproduction that might go undetected by a single brood manipulation. Neither observation nor experiment supported the existence of a trade-off between offspring quality and quantity, in contrast with the predictions of life-history theory. Nestling wing length, mass, and tarsus length were unrelated to brood size. Although differences between means were in the direction predicted, few differences were statistically significant, despite large sample sizes. Nestlings from small broods were no more likely to return as breeding adults than nestlings from large broods, but return rates of both groups were very low. Parental return rates were also independent of brood size, and there was no evidence of a negative effect of brood size on future fecundity (laying date, clutch size). Reproductive success, nestling size, and survival did not differ between treatments for females whose broods were manipulated in successive years. Within the range of brood sizes observed in this study, the life-history costs of feeding one or two additional nestlings in tree swallows appear to be slight and cannot explain observed clutch sizes. Costs not measured in this study, such as the production of eggs or postfledging parental care, may be more important in limiting clutch size in birds.


2018 ◽  
pp. 68-97
Author(s):  
Douglas S. Glazier

In this chapter, I show how clutch mass, offspring (egg) mass, and clutch size relate to body mass among species of branchiopod, maxillipod, and malacostracan crustaceans, as well as how these important life history traits vary among major taxa and environments independently of body size. Clutch mass relates strongly and nearly isometrically to body mass, probably because of physical volumetric constraints. By contrast, egg mass and clutch size relate more weakly and curvilinearly to body mass and vary in inverse proportion to one another, thus indicating a fundamental trade-off, which occurs within many crustacean taxa as well. In general, offspring (egg) size and number and their relationships to body mass appear to be more ecologically sensitive and evolutionarily malleable than clutch mass. The body mass scaling relationships of egg mass and clutch size show much more taxonomic and ecological variation (log-log scaling slopes varying from near 0 to almost 1 among major taxa) than do those for clutch mass, a pattern also observed in other animal taxa. The curvilinear body mass scaling relationships of egg mass and number also suggest a significant, size-related shift in how natural selection affects offspring versus maternal fitness. As body size increases, selection apparently predominantly favors increases in offspring size and fitness up to an asymptote, beyond which increases in offspring number and thus maternal fitness are preferentially favored. Crustaceans not only offer excellent opportunities for furthering our general understanding of life history evolution, but also their ecological and economic importance warrants further study of the various factors affecting their reproductive success.


Viruses ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 141
Author(s):  
David J. Páez ◽  
Arietta E. Fleming-Davies

The use of viral pathogens to control the population size of pest insects has produced both successful and unsuccessful outcomes. Here, we investigate whether those biocontrol successes and failures can be explained by key ecological and evolutionary processes between hosts and pathogens. Specifically, we examine how heterogeneity in pathogen transmission, ecological and evolutionary tradeoffs, and pathogen diversity affect insect population density and thus successful control. We first review the existing literature and then use numerical simulations of mathematical models to further explore these processes. Our results show that the control of insect densities using viruses depends strongly on the heterogeneity of virus transmission among insects. Overall, increased heterogeneity of transmission reduces the effect of viruses on insect densities and increases the long-term stability of insect populations. Lower equilibrium insect densities occur when transmission is heritable and when there is a tradeoff between mean transmission and insect fecundity compared to when the heterogeneity of transmission arises from non-genetic sources. Thus, the heterogeneity of transmission is a key parameter that regulates the long-term population dynamics of insects and their pathogens. We also show that both heterogeneity of transmission and life-history tradeoffs modulate characteristics of population dynamics such as the frequency and intensity of “boom–bust" population cycles. Furthermore, we show that because of life-history tradeoffs affecting the transmission rate, the use of multiple pathogen strains is more effective than the use of a single strain to control insect densities only when the pathogen strains differ considerably in their transmission characteristics. By quantifying the effects of ecology and evolution on population densities, we are able to offer recommendations to assess the long-term effects of classical biocontrol.


Oecologia ◽  
2020 ◽  
Vol 192 (4) ◽  
pp. 893-907
Author(s):  
Eric L. Kruger ◽  
Ken Keefover-Ring ◽  
Liza M. Holeski ◽  
Richard L. Lindroth

Sign in / Sign up

Export Citation Format

Share Document