scholarly journals Effect of Oxygen Portial Pressure of Ambient Atmosphere on Surface Tension of High Temperature Molten Metals Measured by Electromagnetic Levitation Furnace

Materia Japan ◽  
2011 ◽  
Vol 50 (2) ◽  
pp. 63-69
Author(s):  
Shumpei Ozawa ◽  
Keisuke Morohoshi ◽  
Taketoshi Hibiya ◽  
Hiroyuki Fukuyama
2021 ◽  
pp. 72-181
Author(s):  
Thorvald Abel Engh ◽  
Geoffrey K. Sigworth ◽  
Anne Kvithyld

The fundamentals of thermodynamics are reviewed, focusing on the chemistry of high-temperature metals, oxides (slags), and salts. Thermochemical data are provided for important molten metals: the free energies of solution of alloy elements, and interaction coefficients. Standard free energies of reactions are also provided, so the reader may calculate important chemical equilibria. Example calculations are provided for the deoxidation of steel. The removal of sulfur and phosphorus are also described. The second half of the chapter considers fundamental aspects of important physical properties: viscosity, surface tension, diffusion, and thermal and electrical conductivity.


Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1023 ◽  
Author(s):  
Ashish Chhaganlal Gandhi ◽  
Chia-Liang Cheng ◽  
Sheng Yun Wu

We report the synthesis of room temperature (RT) stabilized γ–Bi2O3 nanoparticles (NPs) at the expense of metallic Bi NPs through annealing in an ambient atmosphere. RT stability of the metastable γ–Bi2O3 NPs is confirmed using synchrotron radiation powder X-ray diffraction and Raman spectroscopy. γ–Bi2O3 NPs exhibited a strong red-band emission peaking at ~701 nm, covering 81% integrated intensity of photoluminescence spectra. Our findings suggest that the RT stabilization and enhanced red-band emission of γ‒Bi2O3 is mediated by excess oxygen ion vacancies generated at the octahedral O(2) sites during the annealing process.


2020 ◽  
Vol 42 (2) ◽  
Author(s):  
Thomas Leitner ◽  
Anna Werkovits ◽  
Siegfried Kleber ◽  
Gernot Pottlacher

AbstractW360 is a hot work tool steel produced by voestalpine BÖHLER Edelstahl GmbH & Co KG, a special steel producer located in Styria, Austria. Surface tension and density of liquid W360 were studied as a function of temperature in a non-contact, containerless fashion using the oscillating drop method inside an electromagnetic levitation setup. For both, surface tension and density, a linear model was adapted to present the temperature dependence of these measures, including values for the uncertainties of the fit parameters found. The data obtained are compared to pure iron (with 91 wt% the main component of W360), showing an overlap for the liquid density while there is a significant difference in surface tension (− 5.8 % at the melting temperature of pure iron of 1811 K).


2007 ◽  
Vol 71 (5) ◽  
pp. 608-610 ◽  
Author(s):  
M. V. Gedgagova ◽  
Kh. M. Guketlov ◽  
V. K. Kumykov ◽  
A. R. Manukyants ◽  
I. N. Sergeev ◽  
...  

2000 ◽  
Vol 40 (Suppl) ◽  
pp. S144-S147
Author(s):  
K. Nogi ◽  
T. Nakano ◽  
T. Matsumoto ◽  
H. Fujii

2021 ◽  
Vol 6 (3(62)) ◽  
pp. 11-14
Author(s):  
Oleh Zimin

The object of research in this work is the intensification of hydrocarbon production. The most problematic task of the study is the efficiency of intensification of compacted high-temperature carbonate reservoirs. Despite the gradual transition to renewable energy sources, natural gas and oil will play a dominant role in the world's energy balance in the next 20–30 years. Carbonate rocks have significant mining potential, but low filtration properties require intensification to improve reservoir permeability. High temperatures and pressures at great depths require the improvement of existing hydrocarbon production technologies. The most popular method for treating reservoirs containing carbonates is acid treatments in different variations, but for effective treatment it is necessary to achieve deep penetration of the solution into the formation. The study solves the problem of selection of effective carrier liquids for the preparation of acid solutions for the treatment of compacted high-temperature reservoirs with high carbonate content. To ensure quality treatment, acid solutions must have low viscosity and surface tension coefficient, low reaction rate, their chemical properties must ensure the absence of insoluble precipitates in the process of reactions with fluids and rocks, as well as be environmentally friendly. To select the most optimal carrier liquid, experiments were conducted to determine which candidate liquids provide the minimum reaction rate of acidic solutions with carbonates. Based on the analysis of industrial application data and literature sources, water, nephras, methanol, ethyl acetate, and methyl acetate were selected for further research. Widely studied acetic acid was chosen as the basic acid. Studies have shown that methyl acetate has a number of advantages, namely low reaction rate, low viscosity and surface tension coefficient. As well as the possibility of hydrolysis in the formation with the release of acetic acid, which significantly prolongs the reaction time of the solution with the rock and the depth of penetration of the active solution into the formation.


Sign in / Sign up

Export Citation Format

Share Document