scholarly journals Recovery of Silver from the Nitrate Leaching Solution of a Spent Ag/α-Al2O3 Catalyst by Solvent Extraction and Reduction

2017 ◽  
Vol 58 (5) ◽  
pp. 829-833 ◽  
Author(s):  
Pan-Pan Sun ◽  
Bong-Jo Rho ◽  
Sung-Yong Cho
2014 ◽  
Vol 53 (52) ◽  
pp. 20241-20246 ◽  
Author(s):  
Pan-Pan Sun ◽  
Hyoung-Il Song ◽  
Tae-Young Kim ◽  
Byoung-Jun Min ◽  
Sung-Yong Cho

Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1300
Author(s):  
Pan-Pan Sun ◽  
Tae-Young Kim ◽  
Hyeon Seo ◽  
Sung-Yong Cho

A nitrate leachate containing Cu(II), Ag(I), Ni(II), Mg(II), and Al(III) was obtained during the leaching of industrial dust, which arises during the pyrometallurgy of spent camera modules. To separate and recover Cu(II) and Ag(I) from the leaching solution, solvent extraction experiments using 5,8-diethyl-7-hydroxydodecan-6-oxime (LIX63) were conducted. LIX63 was found to selectively extract Cu(II) and Ag(I) over other metal ions (Ni(II), Mg(II), and Al(III)) at low nitric acid concentrations. The extraction efficiency of Cu(II) was more affected than that of Ag(I) by the acidity of the feed solution and the LIX63 concentration in the organic phase. Cu(II) and Ag(I) were simultaneously extracted using 2 mol/L LIX63. Cu(II) was separated from the loaded LIX63 via stripping with 4 mol/L HNO3, whereas Ag(I) was recovered via stripping with 0.1 mol/L thiourea after the removal of Cu(II). McCabe–Thiele diagrams for the extraction and stripping of Cu(II) and Ag(I) were constructed. The complete extraction of Cu(II) and Ag(I) was confirmed via counter-current extraction. Moreover, stripping simulation tests confirmed that higher than 99.99% of Cu(II) and 99.2% of Ag(I) were stripped. The purities of Cu(II) and Ag(I) in the recovered solution were 95.2% and 99.993%, respectively. A process flow chart for the recovery of Cu(II) and Ag(I) from the nitrate leachate of the target industrial dust was also provided.


Processes ◽  
2018 ◽  
Vol 6 (8) ◽  
pp. 112 ◽  
Author(s):  
Wei Xing ◽  
Man Lee ◽  
Seung Choi

Ion exchange and cementation experiments were done to separate silver(I) from a raffinate containing silver(I), nickel(II), and zinc(II) and small amounts of copper(II) and tin(II). The raffinate resulted from the recovery of gold(III), tin(II) and copper(II) by solvent extraction from a leaching solution of anode slime. Ion exchange with anionic resins was not effective in separating silver(I) because tin(II) and zinc(II) were selectively adsorbed into the anionic resins. It was possible to separate silver(I) by cementation with copper sheet. Treatment of the cemented silver with nitric acid solution increased the purity of silver(I) in the solution from 50.9% to 99.99%. Adjusting the pH of the AgNO3 solution to higher than 6, followed by adding ascorbic acid as a reducing agent, led to the synthesis of silver particles with micron size.


Processes ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 243 ◽  
Author(s):  
Wei Dong Xing ◽  
Man Seung Lee

The demand for noble metals is increasing, owing to their excellent chemical and physical properties. In order to meet the demand, the recovery of noble metals with high purity from diverse secondary resources, which contain small amounts of noble metals, is of immense value. In this work, the possibility of the separation of Au(III), Pd(II), Pt(IV), Rh(III), and Ir(IV) by solvent extraction from a synthetic HCl solution is investigated. Only Au(III) was selectively extracted by Cyanex 272 in the HCl concentration range from 0.5 M to 9 M, leaving the other metal ions in the raffinate. The loaded Au(III) in Cyanex 272 was efficiently stripped by (NH2)2CS. The other four noble metals were sequentially separated on the basis of the procedures reported in the previous work. The mass balance showed that about 98% of each metal, except Pt(IV), was recovered by the proposed process. An efficient process for the recovery of the five noble metal ions from the HCl leaching solution of secondary resources containing these metals can be developed.


Sign in / Sign up

Export Citation Format

Share Document