scholarly journals Effects of Size of the Largest Crack and Size Difference among Cracks on Critical Current of Superconducting Tape with Multiple Cracks in Superconducting Layer

2020 ◽  
Vol 61 (4) ◽  
pp. 766-775
Author(s):  
Shojiro Ochiai ◽  
Hiroshi Okuda
2022 ◽  
Vol 64 (3) ◽  
pp. 319
Author(s):  
А.И. Подливаев ◽  
И.А. Руднев

Numerically, within the framework of the critical state model, the density of superconducting currents in a second-generation HTSC tape based on GdBa2Cu3O7-x is determined. It is shown that during the restoration of the transverse crack of the superconducting layer by shunting the crack with a piece of defect-free tape, the critical current of the restored area decreases by ~ 8%. It is shown that preliminary irradiation of the crack edges with ions of hydrogen, helium, neon, and oxygen makes it possible to restore the initial value of the critical current. The calculation of the effect of radiation on a superconducting tape was carried out using the SRIM software package


1992 ◽  
Vol 4 (1) ◽  
pp. 34-39,f3
Author(s):  
K. Togano ◽  
H. Kumakura ◽  
H. Kitaguchi ◽  
H. Maeda ◽  
J. Shimoyama ◽  
...  

1997 ◽  
pp. 843-846
Author(s):  
Kazutaka Yamamoto ◽  
Hiroko Onoda ◽  
Yutaka Yamada ◽  
Tsutomu Koizumi ◽  
Takayo Hasegawa ◽  
...  

2012 ◽  
Vol 706-709 ◽  
pp. 143-148
Author(s):  
S. Ochiai ◽  
H. Okuda ◽  
Akihiro Toda ◽  
Shinji Nagano ◽  
M. Sugano ◽  
...  

Influences of cracking of the coated DyBa2Cu3Ȯ˽δ˰superconducting layer in composite superconductor under applied tensile strain on V(voltage)-I(current) curve, critical current and n-value were studied experimentally and analytically. The measured variations of V-I curve and critical current with increasing applied strain were described well by the modeling analysis. Also, the variations of shunting current with increasing imposed current and also with extension of cracks were revealed, from which the influences of shunting current on the variation of n-value with current were elucidated.


Author(s):  
Kazumune KATAGIRI ◽  
Koichi KASABA ◽  
Yoshitaka SHOJI ◽  
Masaki ISHIZAKI ◽  
Kazuo WATANABE ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2679 ◽  
Author(s):  
Bright Chimezie Robert ◽  
Muhammad Umar Fareed ◽  
Harold Steven Ruiz

In an attempt to unveil the impact of the material law selection on the numerical modelling and analysis of the electromagnetic properties of superconducting coils, in this paper we compare the four most common approaches to the E-J power laws that serve as a modelling tool for the conductivity properties of the second generation of high-temperature superconducting (2G-HTS) tapes. The material laws considered are: (i) the celebrated E-J critical-state like-model, with constant critical current density and no dependence with the magnetic field; (ii) the classical Kim’s model which introduces an isotropic dependence with the environment magnetic field; (iii) a semi-empirical Kim-like model with an orthonormal field dependence, J c ( B ) , widely used for the modelling of HTS thin films; and (iv) the experimentally measured E–J material law for SuperPower Inc. 2G-HTS tapes, which account for the magneto-angular anisotropy of the in-field critical current density J c ( B ; θ ) , with a derived function similar to Kim’s model but taking into account some microstructural parameters, such as the electron mass anisotropy ratio ( γ ) of the superconducting layer. Particular attention has been given to those physical quantities which within a macroscopic approach can be measured by well-established experimental setups, such as the measurement of the critical current density for each of the turns of the superconducting coil, the resulting distribution of magnetic field, and the curve of hysteretic losses for different amplitudes of an applied alternating transport current at self-field conditions. We demonstrate that although all these superconducting material laws are equally valid from a purely qualitative perspective, the critical state-like model is incapable of predicting the local variation of the critical current density across each of the turns of the superconducting coil, or its non-homogeneous distribution along the width of the superconducting tape. However, depending on the physical quantity of interest and the error tolerance allowed between the numerical predictions and the experimental measurements, in this paper decision criteria are established for different regimes of the applied current, where the suitability of one or another model could be ensured, regardless of whether the actual magneto angular anisotropy properties of the superconducting tape are known.


Sign in / Sign up

Export Citation Format

Share Document