Landscape Genetics of Hume's Pheasant Syrmaticus humiae: Rivers Act as Potential Genetic Barriers

2021 ◽  
Vol 20 (2) ◽  
Author(s):  
Yongjian Bei ◽  
Jieling Lai ◽  
Kathy Martin ◽  
Weicai Chen
2015 ◽  
Vol 81 (7) ◽  
pp. 2481-2488 ◽  
Author(s):  
Volker Winstel ◽  
Petra Kühner ◽  
Bernhard Krismer ◽  
Andreas Peschel ◽  
Holger Rohde

ABSTRACTGenetic manipulation of emerging bacterial pathogens, such as coagulase-negative staphylococci (CoNS), is a major hurdle in clinical and basic microbiological research. Strong genetic barriers, such as restriction modification systems or clustered regularly interspaced short palindromic repeats (CRISPR), usually interfere with available techniques for DNA transformation and therefore complicate manipulation of CoNS or render it impossible. Thus, current knowledge of pathogenicity and virulence determinants of CoNS is very limited. Here, a rapid, efficient, and highly reliable technique is presented to transfer plasmid DNA essential for genetic engineering to important CoNS pathogens from a uniqueStaphylococcus aureusstrain via a specificS. aureusbacteriophage, Φ187. Even strains refractory to electroporation can be transduced by this technique once donor and recipient strains share similar Φ187 receptor properties. As a proof of principle, this technique was used to delete the alternative transcription factor sigma B (SigB) via allelic replacement in nasal and clinicalStaphylococcus epidermidisisolates at high efficiencies. The described approach will allow the genetic manipulation of a wide range of CoNS pathogens and might inspire research activities to manipulate other important pathogens in a similar fashion.


2014 ◽  
Vol 15 (3) ◽  
pp. 512-525 ◽  
Author(s):  
E. M. Kierepka ◽  
E. K. Latch
Keyword(s):  

PLoS ONE ◽  
2011 ◽  
Vol 6 (10) ◽  
pp. e25359 ◽  
Author(s):  
Patrick M. A. James ◽  
Dave W. Coltman ◽  
Brent W. Murray ◽  
Richard C. Hamelin ◽  
Felix A. H. Sperling

2019 ◽  
Vol 46 (4) ◽  
pp. 293-301 ◽  
Author(s):  
M Paula Quiroga ◽  
Lucia Castello ◽  
Vilma Quipildor ◽  
Andrea C Premoli

SummaryWe combined tools of phylogeography, population genetics and biogeographical interpretation to analyse a group of phylogenetically independent lineages (animals and plants) that coexist within the same geographical region, yet under markedly different environments, in order to identify generalized barriers for gene flow. We tested the hypothesis that major geographic features have produced a concordant genetic structure in phylogenetically independent lineages. A rigorous bibliographic search was performed, selecting available molecular information from six taxa occupying distinct southern biomes of South America: Yungas, Prepuna, Puna and northern Monte. We estimated within-population genetic diversity, the genetic structure and haplotype phylogenies to assemble distribution maps of genetic barriers for each species. We found a strong association between genetic variation and latitudinal distribution of populations. We detected a major barrier for six taxa at 27°S latitude and a second one for a group of three species at 25–26°S. Two alternative non-exclusive hypotheses – geology and/or climate – explain concordant genetic barriers in divergent lineages. We suggest that the term ‘biogeographically significant units’ portrays a group of populations of phylogenetically unrelated taxa that inhabit the same geographic region that have been similarly impacted by major physical events, which can be used to identify priority areas in landscape conservation.


2019 ◽  
Vol 32 ◽  
pp. 3 ◽  
Author(s):  
Eric Pante ◽  
Vanessa Becquet ◽  
Amélia Viricel ◽  
Pascale Garcia

We used transcriptomic sequence data to describe patterns of divergence and selection across different populations of a marine bivalve (Limecola balthica). Our analyses focused on a nuclear gene (atp5c1) that was previously detected in an FST scan as highly structured among populations separated by the Finistère Peninsula in France. This gene encodes the gamma subunit of the FO/F1 ATP synthase, a multi-protein complex that is paramount to cellular respiration and energy production. Analysis of non-synonymous to synonymous mutation ratios revealed that 65% of the gene is highly conserved (dN/dS ≤ 0.1, min = 0), while 6% of the gene is likely under positive selection (dN/dS ≥ 1, max = 2.03). All replacement mutations are clustered on a 46 residues portion of the protein, within an inter-peptide interaction zone. Comparative genomics suggests that these mutations are evolutionarily stable, and we hypothesize that they are involved in inter-population genetic incompatibilities with other subunits of the ATP synthase complex. The protein stability of the gamma subunit conferred by southern variants was inferred to be higher under warmer temperatures, suggesting that environmental conditions may contribute to the strength of genetic barriers in L. balthica.


2011 ◽  
Vol 20 (12) ◽  
pp. 2477-2479 ◽  
Author(s):  
ANDREW J. BOHONAK ◽  
AMY G. VANDERGAST

Mammalia ◽  
2014 ◽  
Vol 78 (2) ◽  
Author(s):  
Claudine Montgelard ◽  
Saliha Zenboudji ◽  
Anne-Laure Ferchaud ◽  
Véronique Arnal ◽  
Bettine Jansen van Vuuren

AbstractThe focus of this review is on landscape genetics (LG), a relatively new discipline that arose approximately 10 years ago. LG spans the interface between population genetics and landscape ecology and thus incorporates the concepts, methods, and tools from both disciplines. On the basis of an understanding of the spatial distribution of genetic diversity, LG aims to explain how landscape and environmental characteristics influence microevolutionary processes and metapopulation dynamics, including gene flow (i.e., connectivity) and selection (i.e., local adaptations). LG is concerned with events that occurred during the recent time scale, and the individual is the operational unit. As a discipline that combines spatial genetic diversity with ecological features, LG is able to address questions relating to different evolutionary processes. We illustrate some of these here using examples taken from mammals: population structure; gene flow and the identification of barriers; fragmentation, connectivity, and corridors; local adaptation and selection; there are two different questions: applications in conservation genetics; and future developments in LG. We will then present the methods and tools commonly used in the different steps of LG analyses: the genetic and landscape sampling, the quantification of genetic variation, the characterization of spatial landscape structures, and finally, the correlation between genetic patterns and landscape features.


Sign in / Sign up

Export Citation Format

Share Document