scholarly journals Investigation of the molecular signatures of selection on ATP synthase genes in the marine bivalve Limecola balthica

2019 ◽  
Vol 32 ◽  
pp. 3 ◽  
Author(s):  
Eric Pante ◽  
Vanessa Becquet ◽  
Amélia Viricel ◽  
Pascale Garcia

We used transcriptomic sequence data to describe patterns of divergence and selection across different populations of a marine bivalve (Limecola balthica). Our analyses focused on a nuclear gene (atp5c1) that was previously detected in an FST scan as highly structured among populations separated by the Finistère Peninsula in France. This gene encodes the gamma subunit of the FO/F1 ATP synthase, a multi-protein complex that is paramount to cellular respiration and energy production. Analysis of non-synonymous to synonymous mutation ratios revealed that 65% of the gene is highly conserved (dN/dS ≤ 0.1, min = 0), while 6% of the gene is likely under positive selection (dN/dS ≥ 1, max = 2.03). All replacement mutations are clustered on a 46 residues portion of the protein, within an inter-peptide interaction zone. Comparative genomics suggests that these mutations are evolutionarily stable, and we hypothesize that they are involved in inter-population genetic incompatibilities with other subunits of the ATP synthase complex. The protein stability of the gamma subunit conferred by southern variants was inferred to be higher under warmer temperatures, suggesting that environmental conditions may contribute to the strength of genetic barriers in L. balthica.

Genetics ◽  
1995 ◽  
Vol 140 (2) ◽  
pp. 435-442 ◽  
Author(s):  
E R Weber ◽  
R S Rooks ◽  
K S Shafer ◽  
J W Chase ◽  
P E Thorsness

Abstract In Saccharomyces cerevisiae, inactivation of the nuclear gene YME1 causes several phenotypes associated with impairment of mitochondrial function. In addition to deficiencies in mitochondrial compartment integrity and respiratory growth, yme1 mutants grow extremely slowly in the absence of mitochondrial DNA. We have identified two genetic loci that, when mutated, act as dominant suppressors of the slow-growth phenotype of yme1 strains lacking mitochondrial DNA. These mutations only suppressed the slow-growth phenotype of yme1 strains lacking mitochondrial DNA and had no effect on other phenotypes associated with yme1 mutations. One allele of one linkage group had a collateral respiratory deficient phenotype that allowed the isolation of the wild-type gene. This suppressing mutation was in ATP3, a gene that encodes the gamma subunit of the mitochondrial ATP synthase. Recovery of two of the suppressing ATP3 alleles and subsequent sequence analysis placed the suppressing mutations at strictly conserved residues near the C terminus of Atp3p. Deletion of the ATP3 genomic locus resulted in an inability to utilize nonfermentable carbon sources. atp3 deletion strains lacking mitochondrial DNA grew slowly on glucose media but were not as compromised for growth as yme1 yeast lacking mitochondrial DNA.


Author(s):  
Marco Fiorillo ◽  
Cristian Scatena ◽  
Antonio Giuseppe Naccarato ◽  
Federica Sotgia ◽  
Michael P. Lisanti

AbstractHere, we provide evidence that high ATP production by the mitochondrial ATP-synthase is a new therapeutic target for anticancer therapy, especially for preventing tumor progression. More specifically, we isolated a subpopulation of ATP-high cancer cells which are phenotypically aggressive and demonstrate increases in proliferation, stemness, anchorage-independence, cell migration, invasion and multi-drug resistance, as well as high antioxidant capacity. Clinically, these findings have important implications for understanding treatment failure and cancer cell dormancy. Using bioinformatic analysis of patient samples, we defined a mitochondrial-related gene signature for metastasis, which features the gamma-subunit of the mitochondrial ATP-synthase (ATP5F1C). The relationship between ATP5F1C protein expression and metastasis was indeed confirmed by immunohistochemistry. Next, we used MDA-MB-231 cells as a model system to functionally validate these findings. Importantly, ATP-high MDA-MB-231 cells showed a nearly fivefold increase in metastatic capacity in vivo. Consistent with these observations, ATP-high cells overexpressed (i) components of mitochondrial complexes I–V, including ATP5F1C, and (ii) markers associated with circulating tumor cells (CTCs) and metastasis, such as EpCAM and VCAM1. Knockdown of ATP5F1C expression significantly reduced ATP-production, anchorage-independent growth, and cell migration, as predicted. Similarly, therapeutic administration of the FDA-approved drug, Bedaquiline, downregulated ATP5F1C expression in vitro and prevented spontaneous metastasis in vivo. In contrast, Bedaquiline had no effect on the growth of non-tumorigenic mammary epithelial cells (MCF10A) or primary tumors in vivo. Taken together, our results suggest that mitochondrial ATP depletion is a new therapeutic strategy for metastasis prophylaxis, to avoid treatment failure. In summary, we conclude that mitochondrial ATP5F1C is a promising new biomarker and molecular target for future drug development, for the prevention of metastatic disease progression.


2001 ◽  
Vol 6 (2) ◽  
pp. 91-98 ◽  
Author(s):  
HA-SHENG LI ◽  
JI-YING ZHANG ◽  
BRYAN S. THOMPSON ◽  
XIAO-YING DENG ◽  
MICHAEL E. FORD ◽  
...  

Individuals with chronic excessive alcohol ingestion are put at the risk of acute and chronic pancreatitis. Underlying molecular mechanisms are unknown. Differential gene expression in the pancreas was profiled using mRNA differential display by comparison between control and ethanol-consuming rats. Male Wistar rats were fed with diets containing 6.7% (vol/vol) ethanol for 4 wk. A cDNA tag that was overexpressed in the pancreas of rats fed ethanol was isolated. A 723-bp cDNA was cloned from a rat pancreatic cDNA library, which encodes a novel rat mitochondrial ATP synthase subunit 9, isoform 3 (ATP5G3), which is homologous to a human ATP5G3 gene. Real-time PCR demonstrated that all three nuclear gene isoforms (ATP5G1, ATP5G2, and ATP5G3) were consistently upregulated in the pancreas of alcohol-consuming rats, parallel with mitochondrial injury. The cellular response to mitochondrial damage and metabolic stress may reflect an adaptive process for mitochondrial repair in pancreatic acinar cells during chronic ethanol ingestion.


2018 ◽  
Vol 93 (05) ◽  
pp. 629-635
Author(s):  
F.B. Pereira ◽  
V.L. Ferreira ◽  
W.M. Tomas ◽  
C. Elisei ◽  
F. Paiva ◽  
...  

AbstractDiaphanocephalus galeatus collected from the small intestine of the lizard Dracaena paraguayensis in the Pantanal wetlands, State of Mato Grosso do Sul, Brazil, is redescribed. Genetic characterization and observations using scanning electron microscopy (SEM) were performed for the first time. The vouchers of D. galeatus and the type specimens of its congeners, deposited in the Coleção Helmintológica do Instituto Oswaldo Cruz (CHIOC), were consulted. Light and SEM observations revealed several undescribed features of D. galeatus, i.e. structure of the cephalic end and of the buccal capsule, position and morphology of deirids, presence of phasmids in females and presence of unpaired papilla on the membranous projection that covers the genital cone in males. After observation of the specimens deposited in the helminthological collection, D. jacuruxi is considered a synonym of D. galeatus, and D. diesingi, despite its incomplete description, is tentatively retained as valid due to the poor condition of the type material. The results also indicated low host specificity of D. galeatus, contradicting previous assertions. Genetic comparisons using patristic distances and phylogenetic trees generated from sequences of the 28S rRNA nuclear gene indicated that D. galeatus is closer to the taxa within Ancylostomatoidea and Strongyloidea than any lineage of Metastrongyloidea or Trichostrongyloidea. However, most of the nodal supports were low. Based on the genetic and morphological characterization, the validity of D. galeatus was confirmed. These data may serve for further comparative approaches for different populations of the parasite, from different hosts in different geographical areas, mitigating taxonomic confusions.


2000 ◽  
Vol 203 (1) ◽  
pp. 41-49 ◽  
Author(s):  
A.D. Vinogradov

H(+)-ATP synthase (F(1)F(o) ATPase) catalyzes the synthesis and/or hydrolysis of ATP, and the reactions are strongly affected by all the substrates (products) in a way clearly distinct from that expected of a simple reversibly operating enzyme. Recent studies have revealed the structure of F(1), which is ideally suited for the alternating binding change mechanism, with a rotating gamma-subunit as the energy-driven coupling device. According to this mechanism ATP, ADP, inorganic phosphate (P(i)) and Mg(2+) participate in the forward and reverse overall reactions exclusively as the substrates and products. However, both F(1) and F(1)F(o) demonstrate non-trivial steady-state and pre-steady-state kinetics as a function of variable substrate (product) concentrations. Several effectors cause unidirectional inhibition or activation of the enzyme. When considered separately, the unidirectional effects of ADP, P(i), Mg(2+) and energy supply on ATP synthesis or hydrolysis may possibly be explained by very complex kinetic schemes; taken together, the results suggest that different conformational states of the enzyme operate in the ATP hydrolase and ATP synthase reactions. A possible mechanism for an energy-dependent switch between the two states of F(1)F(o) ATPase is proposed.


Biostatistics ◽  
2019 ◽  
Author(s):  
Jingchunzi Shi ◽  
Michael Boehnke ◽  
Seunggeun Lee

Summary Trans-ethnic meta-analysis is a powerful tool for detecting novel loci in genetic association studies. However, in the presence of heterogeneity among different populations, existing gene-/region-based rare variants meta-analysis methods may be unsatisfactory because they do not consider genetic similarity or dissimilarity among different populations. In response, we propose a score test under the modified random effects model for gene-/region-based rare variants associations. We adapt the kernel regression framework to construct the model and incorporate genetic similarities across populations into modeling the heterogeneity structure of the genetic effect coefficients. We use a resampling-based copula method to approximate asymptotic distribution of the test statistic, enabling efficient estimation of p-values. Simulation studies show that our proposed method controls type I error rates and increases power over existing approaches in the presence of heterogeneity. We illustrate our method by analyzing T2D-GENES consortium exome sequence data to explore rare variant associations with several traits.


Parasitology ◽  
2011 ◽  
Vol 138 (13) ◽  
pp. 1760-1777 ◽  
Author(s):  
LAURA M. McDONAGH ◽  
JAMIE R. STEVENS

SUMMARYThe Calliphoridae include some of the most economically significant myiasis-causing flies in the world – blowflies and screwworm flies – with many being notorious for their parasitism of livestock. However, despite more than 50 years of research, key taxonomic relationships within the family remain unresolved. This study utilizes nucleotide sequence data from the protein-coding genes COX1 (mitochondrial) and EF1α (nuclear), and the 28S rRNA (nuclear) gene, from 57 blowfly taxa to improve resolution of key evolutionary relationships within the family Calliphoridae. Bayesian phylogenetic inference was carried out for each single-gene data set, demonstrating significant topological difference between the three gene trees. Nevertheless, all gene trees supported a Calliphorinae-Luciliinae subfamily sister-lineage, with respect to Chrysomyinae. In addition, this study also elucidates the taxonomic and evolutionary status of several less well-studied groups, including the genus Bengalia (either within Calliphoridae or as a separate sister-family), genus Onesia (as a sister-genera to, or sub-genera within, Calliphora), genus Dyscritomyia and Lucilia bufonivora, a specialised parasite of frogs and toads. The occurrence of cross-species hybridisation within Calliphoridae is also further explored, focusing on the two economically significant species Lucilia cuprina and Lucilia sericata. In summary, this study represents the most comprehensive molecular phylogenetic analysis of family Calliphoridae undertaken to date.


Sign in / Sign up

Export Citation Format

Share Document