scholarly journals Omega-3 Fatty Acids Reduce Adipose Tissue Macrophages in Human Subjects With Insulin Resistance

Diabetes ◽  
2013 ◽  
Vol 62 (5) ◽  
pp. 1709-1717 ◽  
Author(s):  
M. Spencer ◽  
B. S. Finlin ◽  
R. Unal ◽  
B. Zhu ◽  
A. J. Morris ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Jing Li ◽  
Heng Zhang ◽  
Yongqiang Dong ◽  
Xian Wang ◽  
Guang Wang

The adipose Nod-like receptor protein 3 (NLRP3) inflammasome initiates insulin resistance; however, the mechanism of inflammasome activation in adipose tissue remains elusive. In this study, homocysteine (Hcy) was found to participate in insulin resistance via a NLRP3 inflammasome-related process. Hcy-induced activation of NLRP3 inflammasomes were observed in adipose tissue during the generation of insulin resistance in vivo. This animal model suggests that diets high in omega-3 fatty acids alter serum and adipose lipid profiles, and in this way, omega-3 fatty acids may reduce adipose tissue inflammation and attenuate insulin resistance.


Nutrients ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 835 ◽  
Author(s):  
Chacińska ◽  
Zabielski ◽  
Książek ◽  
Szałaj ◽  
Jarząbek ◽  
...  

It has been established that OMEGA-3 polyunsaturated fatty acids (PUFAs) may improve lipid and glucose homeostasis and prevent the “low-grade” state of inflammation in animals. Little is known about the effect of PUFAs on adipocytokines expression and biologically active lipids accumulation under the influence of high-fat diet-induced obesity. The aim of the study was to examine the effect of fish oil supplementation on adipocytokines expression and ceramide (Cer) and diacylglycerols (DAG) content in visceral and subcutaneous adipose tissue of high-fat fed animals. The experiments were carried out on Wistar rats divided into three groups: standard diet–control (SD), high-fat diet (HFD), and high-fat diet + fish oil (HFD+FO). The fasting plasma glucose and insulin concentrations were examined. Expression of carnitine palmitoyltransferase 1 (CPT1) protein was determined using the Western blot method. Plasma adipocytokines concentration was measured using ELISA kits and mRNA expression was determined by qRT-PCR reaction. Cer, DAG, and acyl-carnitine (A-CAR) content was analyzed by UHPLC/MS/MS. The fish oil supplementation significantly decreased plasma insulin concentration and Homeostatic Model Assesment for Insulin Resistance (HOMA-IR) index and reduced content of adipose tissue biologically active lipids in comparison with HFD-fed subjects. The expression of CPT1 protein in HFD+FO in both adipose tissues was elevated, whereas the content of A-CAR was lower in both HFD groups. There was an increase of adiponectin concentration and expression in HFD+FO as compared to HFD group. OMEGA-3 fatty acids supplementation improved insulin sensitivity and decreased content of Cer and DAG in both fat depots. Our results also demonstrate that PUFAs may prevent the development of insulin resistance in response to high-fat feeding and may regulate the expression and secretion of adipocytokines in this animal model.


Author(s):  
Thomas Andersen Rix ◽  
Pia Dinesen ◽  
Søren Lundbye‐Christensen ◽  
Albert Marni Joensen ◽  
Sam Riahi ◽  
...  

2019 ◽  
Vol 38 (5) ◽  
pp. 2087-2097 ◽  
Author(s):  
Maricela Rodríguez-Cruz ◽  
Salvador Atilano-Miguel ◽  
Lourdes Barbosa-Cortés ◽  
Mariela Bernabé-García ◽  
Tomas Almeida-Becerril ◽  
...  

2019 ◽  
Vol 6 (1) ◽  
pp. 1796-1803
Author(s):  
Rashmi S. Chouthe ◽  
◽  
Santosh D Shelke ◽  
Rahul P. Kshirsagar ◽  
◽  
...  

2018 ◽  
Vol 50 (1) ◽  
pp. 71-82 ◽  
Author(s):  
Martin Gajdošík ◽  
Lukas Hingerl ◽  
Antonín Škoch ◽  
Angelika Freudenthaler ◽  
Patrik Krumpolec ◽  
...  

Nutrients ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 223
Author(s):  
Kassandra Lanchais ◽  
Frederic Capel ◽  
Anne Tournadre

Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by a high prevalence of death due to cardiometabolic diseases. As observed during the aging process, several comorbidities, such as cardiovascular disorders (CVD), insulin resistance, metabolic syndrome and sarcopenia, are frequently associated to RA. These abnormalities could be closely linked to alterations in lipid metabolism. Indeed, RA patients exhibit a lipid paradox, defined by reduced levels of total, low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol whereas the CVD risk is increased. Moreover, the accumulation of toxic lipid mediators (i.e., lipotoxicity) in skeletal muscles can induce mitochondrial dysfunctions and insulin resistance, which are both crucial determinants of CVD and sarcopenia. The prevention or reversion of these biological perturbations in RA patients could contribute to the maintenance of muscle health and thus be protective against the increased risk for cardiometabolic diseases, dysmobility and mortality. Yet, several studies have shown that omega 3 fatty acids (FA) could prevent the development of RA, improve muscle metabolism and limit muscle atrophy in obese and insulin-resistant subjects. Thereby, dietary supplementation with omega 3 FA should be a promising strategy to counteract muscle lipotoxicity and for the prevention of comorbidities in RA patients.


2018 ◽  
Vol 64 ◽  
pp. 147-160 ◽  
Author(s):  
Ondrej Kuda ◽  
Martin Rossmeisl ◽  
Jan Kopecky

Sign in / Sign up

Export Citation Format

Share Document