Omega-3 fatty acids promote fatty acid utilization and production of pro-resolving lipid mediators in alternatively activated adipose tissue macrophages

2017 ◽  
Vol 490 (3) ◽  
pp. 1080-1085 ◽  
Author(s):  
Martina Rombaldova ◽  
Petra Janovska ◽  
Jan Kopecky ◽  
Ondrej Kuda
Diabetes ◽  
2013 ◽  
Vol 62 (5) ◽  
pp. 1709-1717 ◽  
Author(s):  
M. Spencer ◽  
B. S. Finlin ◽  
R. Unal ◽  
B. Zhu ◽  
A. J. Morris ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1811
Author(s):  
Ella Aitta ◽  
Alexis Marsol-Vall ◽  
Annelie Damerau ◽  
Baoru Yang

Baltic herring (Clupea harengus membras) is one of the most abundant commercially caught fish species from the Baltic Sea. Despite the high content of fat and omega-3 fatty acids, the consumption of Baltic herring has decreased dramatically over the last four decades, mostly due to the small sizes and difficulty in processing. At the same time there is an increasing global demand for fish and fish oil rich in omega-3 fatty acids. This study aimed to investigate enzyme-assisted oil extraction as an environmentally friendly process for valorizing the underutilized fish species and by-products to high quality fish oil for human consumption. Three different commercially available proteolytic enzymes (Alcalase®, Neutrase® and Protamex®) and two treatment times (35 and 70 min) were investigated in the extraction of fish oil from whole fish and by-products from filleting of Baltic herring. The oil quality and stability were studied with peroxide- and p-anisidine value analyses, fatty acid analysis with GC-FID, and volatile compounds with HS-SPME-GC-MS. Overall, longer extraction times led to better oil yields but also increased oxidation of the oil. For whole fish, the highest oil yields were from the 70-min extractions with Neutrase and Protamex. Protamex extraction with 35 min resulted in the best fatty acid composition with the highest content of eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) but also increased oxidation compared to treatment with other enzymes. For by-products, the highest oil yield was obtained from the 70-min extraction with Protamex without significant differences in EPA and DHA contents among the oils extracted with different enzymes. Oxidation was lowest in the oil produced with 35-min treatment using Neutrase and Protamex. This study showed the potential of using proteolytic enzymes in the extraction of crude oil from Baltic herring and its by-products. However, further research is needed to optimize enzymatic processing of Baltic herring and its by-products to improve yield and quality of crude oil.


Author(s):  
Thomas Andersen Rix ◽  
Pia Dinesen ◽  
Søren Lundbye‐Christensen ◽  
Albert Marni Joensen ◽  
Sam Riahi ◽  
...  

2015 ◽  
Vol 22 (3) ◽  
pp. 153-162 ◽  
Author(s):  
Juçara X. Zaparoli ◽  
Eduardo K. Sugawara ◽  
Altay A.L. de Souza ◽  
Sérgio Tufik ◽  
José Carlos F. Galduróz

Background: High oxidative stress, which is caused by smoking, can alter omega-3 fatty acid concentrations. Since omega-3 fatty acids play a role in dopaminergic neurotransmission related to dependence, it is important to understand their effects on nicotine dependence. Methods: This research comprised 2 studies. The first one consisted of a cross-sectional evaluation, in which the levels of the most important omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), were compared between smokers and non-smokers in a sample of 171 individuals; of them, 120 were smokers and 51 were non-smokers. The other study was a clinical, double-blind, randomized, placebo controlled, in which 63 smokers received daily treatment with capsules of fish oil (a source of omega-3/3 g/day) or mineral oil (used as placebo, also 3 g/day), taken 3 times a day for 90 days. Each fish oil capsules contained approximately 210.99 mg EPA and 129.84 mg of DHA. The outcome was evaluated by means of psychometric and biological measures as well as self-reports of tobacco use. The evaluations were carried out at the beginning of treatment and once a month thereafter (total of 4 times). Outcomes: The omega-3 fatty acid lipid profile showed that smokers present lower concentrations of DHA. After treatment, the omega-3 group showed a significant reduction in their levels of dependence. Interpretation: Smokers showed lower peripheral levels of omega-3, and treatment with the most important omega-3 fatty acids brought about a reduction in nicotine dependence.


Circulation ◽  
2014 ◽  
Vol 129 (suppl_1) ◽  
Author(s):  
Claire Newlon ◽  
Matthew Muldoon ◽  
Susan Sereika ◽  
Dora Kuan

Background: Greater consumption of omega-3 fatty acids has been associated with lower cardiovascular disease risk. Randomized controlled trials indicate direct, albeit small, beneficial effects of omega-3 fatty acids on plasma triglycerides and blood pressure, yet few studies have tested their impact on insulin resistance and the clustered risk factors comprising the metabolic syndrome. Hypothesis: Short-term supplementation with marine omega-3 polyunsaturated fatty acids, EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid) will improve aggregated cardiometabolic risk (CMR) in healthy middle-aged adults Methods: We conducted a double-blind, placebo-controlled, parallel group clinical trial. Subjects were 30-54 year-old adults free of atherosclerotic disease and diabetes whose intake of EPA and DHA totaled <300 mg/day. Each was randomly assigned to daily fish oil supplements (2g/day containing 1000 mg EPA and 400mg DHA) or matching soybean oil placebo for 18 weeks. Aggregate CMR at baseline and post-intervention was calculated as the standardized sum of standardized distributions of blood pressure, BMI, and fasting serum triglycerides, glucose, and HDL (reverse scored). Missing data due to dropouts (n=17) and outliers (1-6 per variable) were replaced by multivariate imputation. Outcome analyses were conducted with linear regressions of all randomized subjects based on intention-to-treat. Results: Participants were 272 healthy adult (57% (154 out of 272) women; 17% (47 out of 272) minority; mean age 42) Pittsburgh-area residents. At baseline, demographics, health parameters, physical activity and EPA and DHA consumption did not differ significantly between treatment groups. No overall treatment effect was found, whereas gender moderated the effects of treatment on CMR risk (gender, p=.001 and gender*treatment interaction term p=.011). In gender-specific analyses, supplementation lowered CMR risk relative to placebo in men(p=.036, effect size=.629, standard error (SE) =.282) but not women (p=.168, effect size .261, SE=.222). Of the individual CMR variables, only HDL-cholesterol in men revealed a significant improvement (p=.012). In men receiving placebo, HDL-cholesterol fell by 1.1 mg/dl, whereas in those receiving fish oil, HDL rose by 1.7 mg/dl. As has been noted in other samples, compared to women men had greater CMR and lower HDL-cholesterol. Conclusions: Increased intake of n-3 fatty acids over 4 months reduced CMR in healthy, mid-life men but not women. This finding may be due to poorer baseline CMR and HDL characteristic of men, or to gender differences in fatty acid metabolism. Further study of gender differences in cardiometabolic risk and fatty acid metabolism may lead to gender-tailored preventive interventions.


2021 ◽  
Vol 7 (4) ◽  
pp. 279-285
Author(s):  
Havvanur Yoldaş İlktaç ◽  
Nihal Büyükuslu ◽  
Cüneyd Parlayan

Polyamines play an important role in the maintenance of intestinal permeability. Therefore we aimed to determine the effects of probiotics and omega 3 fatty acids on serum polyamine levels in colitis. Fifty BALB/c mice were randomly grouped as normal, colitis with no treatment applied, colitis treated by probiotics (VSL#3), colitis treated by omega-3, and colitis treated by both probiotics and omega-3. Experimental colitis was induced by injection of 200 mg/kg 2,4-Dinitrobenzenesulfonic acid (DNBS). The probiotic and the omega-3 fatty acid supplements were applied daily by oral gavage. Serum polyamine levels were measured with high performance liquid chromatography (HPLC). In each group, the levels of serum polyamines are the highest in spermidine and the least in spermine. Bowel inflammation in experimentally induced colitis mice resulted in lower serum polyamine concentrations. In probiotic and omega 3 fatty acid supplemented group significant decreases were observed for spermine and spermidine (p<0.001), while no significant changes were obtained for putrescine. Combined supplementation of probiotics and omega-3 fatty acids for 10 days in colitis mice significantly decreased the serum levels of spermine and spermidine.


2014 ◽  
Vol 307 (4) ◽  
pp. E374-E383 ◽  
Author(s):  
Myriam Aouadi ◽  
Pranitha Vangala ◽  
Joseph C. Yawe ◽  
Michaela Tencerova ◽  
Sarah M. Nicoloro ◽  
...  

Proinflammatory pathways in adipose tissue macrophages (ATMs) can impair glucose tolerance in obesity, but ATMs may also be beneficial as repositories for excess lipid that adipocytes are unable to store. To test this hypothesis, we selectively targeted visceral ATMs in obese mice with siRNA against lipoprotein lipase (LPL), leaving macrophages within other organs unaffected. Selective silencing of ATM LPL decreased foam cell formation in visceral adipose tissue of obese mice, consistent with a reduced supply of fatty acids from VLDL hydrolysis. Unexpectedly, silencing LPL also decreased the expression of genes involved in fatty acid uptake (CD36) and esterification in ATMs. This deficit in fatty acid uptake capacity was associated with increased circulating serum free fatty acids. Importantly, ATM LPL silencing also caused a marked increase in circulating fatty acid-binding protein-4, an adipocyte-derived lipid chaperone previously reported to induce liver insulin resistance and glucose intolerance. Consistent with this concept, obese mice with LPL-depleted ATMs exhibited higher hepatic glucose production from pyruvate and glucose intolerance. Silencing CD36 in ATMs also promoted glucose intolerance. Taken together, the data indicate that LPL secreted by ATMs enhances their ability to sequester excess lipid in obese mice, promoting systemic glucose tolerance.


Author(s):  
Amy Larkin ◽  
Michael LaCouture ◽  
George Boutsalis ◽  
Harold Bays

Introduction: The less prominent role of triglycerides in determining cardiovascular risk keeps these lipids from being top-of-mind for practicing clinicians, yet epidemiologic data affirm that hypertriglyceridemia contributes to atherosclerotic disease development and progression. We sought to determine if online continuing medical education (CME) could improve the clinical knowledge and competence of primary care physicians (PCPs) and cardiologists regarding hypertriglyceridemia and the use of omega-3 fatty acids in its treatment. Methods: The effects of two educational interventions about advances in hypertriglyceridemia treatment (activity 1) and educating patients about omega-3 fatty acid products (activity 2) were analyzed to determine efficacy of online education presented in the form of online video-based roundtable discussions. The activities launched online in May and June, 2015 respectively, and data were collected through July, 2015. The effects of education were assessed using knowledge- and case-based matched pre-assessment/post-assessments. The effect sizes were calculated with Cohen’s d (> 0.8 is large, 0.8-0.4 is medium, and < 0.4 is small). Results: In total, 842 PCPs and 75 cardiologists who completed all pre/post assessment questions in any of the two activities during the study period were included in analyses. Significant overall improvements were seen for PCPs (activity 1: n = 452, P <.05, effect d= 0.68; activity 2: n = 390, P <.05, effect d= 0.96) and cardiologists (activity 1: n = 35, P <.05, effect d= 0.77; activity 2: n = 40, P <.05, effect d= 0.9). Compared with baseline, specific areas of improvements include: • 22% more PCPs and 31% more cardiologists identified weight loss as a nonpharmacological intervention that can effectively lower triglyceride levels for overweight/obese patients with hypertriglyceridemia, (both P < .05) • 35% more PCPs and 32% more cardiologists identified the appropriate dosing of prescription omega-3 fatty acids (both P <.05) • 23% more PCPs ( P < .05) and 20% more cardiologists ( P =.068 ) recognized that reducing the risk for pancreatitis is a primary medical objective in patients with severe elevations in triglyceride levels Areas identified as needing additional education include: • 57% of all physicians remain unaware that omega-3 fatty acids reduce apolipoprotein C3 • 61% of PCPs and 60% of cardiologists did not demonstrate a thorough understanding of the differences between prescription omega-3 fatty acids and omega-3 supplements Conclusion: This study demonstrates the success of a targeted educational intervention with two educational components on improving knowledge, competence, and clinical decision-making of PCPs and cardiologists regarding hypertriglyceridemia treatment and the role of omega-3 fatty acid products in its treatment.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 134-135
Author(s):  
Artemis P Simopoulos

Abstract Human beings evolved on a diet that was balanced in the omega-6 and omega-3 essential fatty acids to which their genes were programmed to respond. Studies on gene-nutrient interactions using methods from molecular biology and genetics have clearly shown that there are genetic differences in the population, as well as differences in the frequency of genetic variations that interact with diet and influence the growth and development of humans and animals, as well as overall health and chronic disease. Nutrigenetics refers to studies on the role of genetic variants and their response to diet. For example, persons with genetic variants in the metabolism of omega-6 and omega-3 fatty acids have different levels of arachidonic acid (AA) and eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) based on the type of genetic variant in the Fatty Acid Desaturase 1 (FADS1) and Fatty Acid Desaturase 2 (FADS2). At the same level of linoleic acid (LA) and alpha-linolenic acid (ALA) a person with a genetic variant that increases the activity of the FADS1 will have a higher AA in the red cell membrane phospholipids and a higher risk for obesity and cardiovascular disease. Nutrigenomics refers to how nutrients (diets) influence the expression of genes. For example, diets rich in omega-3 fatty acids, EPA and DHA decrease the expression of inflammatory genes and as a result decrease the risk of obesity and cardiovascular disease. Thus, through studies on Nutrigenetics/Nutrigenomics nutritional science stands at its “golden threshold” where personalized nutrition is the future, to improve an individual’s health.


2018 ◽  
Vol 50 (1) ◽  
pp. 71-82 ◽  
Author(s):  
Martin Gajdošík ◽  
Lukas Hingerl ◽  
Antonín Škoch ◽  
Angelika Freudenthaler ◽  
Patrik Krumpolec ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document