Fibroblast Growth Factor-9 Regulates Adaptive Brown Adipose Tissue Mass Expansion

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 277-OR ◽  
Author(s):  
FARNAZ SHAMSI ◽  
TIAN LIAN HUANG ◽  
YU-HUA TSENG
2009 ◽  
Vol 296 (1) ◽  
pp. E121-E131 ◽  
Author(s):  
C. H. Widberg ◽  
F. S. Newell ◽  
A. W. Bachmann ◽  
S. N. Ramnoruth ◽  
M. C. Spelta ◽  
...  

Cell number is an important determinant of adipose tissue mass, and the coordinated proliferation and differentiation of preadipocytes into mature lipid-laden adipocytes underpins the increased adipose tissue mass associated with obesity. Despite this, the molecular cues governing such adipose tissue expansion are poorly understood. We previously reported that fibroblast growth factor-1 (FGF-1) promotes both proliferation and differentiation of human preadipocytes and that the major adipogenic effect of FGF-1 occurs during proliferation, priming the cells for adipose conversion. In the current study, we examined whether this effect was linked to the mitogenic action of FGF-1 by investigating the mitogenic and adipogenic potential of other growth factors, platelet-derived growth factor (PDGF; AA and BB) and vascular endothelial growth factor. Although PDGF-AA and PDGF-BB showed comparable mitogenic potential to FGF-1, only FGF-1 treatment resulted in priming and subsequent differentiation. Pharmacological inhibition of FGF receptor (FGFR) tyrosine kinase activity, using the FGFR-specific inhibitors PD-173074 and SU-5402, revealed an obligate requirement for FGFR activity in these processes. A combination of biochemical and genetic approaches revealed an important role for FGFR1. Knock down of FGFR1 expression by small-interfering RNA reduced FGF-1-stimulated signaling events, proliferation, and priming. Together these data highlight the unique nature of the role of FGF-1 during the earliest stages of adipogenesis and establish a role for FGFR1 in human adipogenesis, identifying FGFR1 as a potential therapeutic target to reduce obesity.


2020 ◽  
Vol 105 (3) ◽  
pp. e520-e531 ◽  
Author(s):  
Lijuan Sun ◽  
Jianhua Yan ◽  
Hui Jen Goh ◽  
Priya Govindharajulu ◽  
Sanjay Verma ◽  
...  

Abstract Background Adipocyte-derived hormones play a role in insulin sensitivity and energy homeostasis. However, the relationship between circulating fibroblast growth factor 21 (FGF21), adipocytokines and cold-induced supraclavicular brown adipose tissue (sBAT) activation is underexplored. Objective Our study aimed to investigate the relationships between cold-induced sBAT activity and plasma FGF21 and adipocytokines levels in healthy adults. Design Nineteen healthy participants underwent energy expenditure (EE) and supraclavicular infrared thermography (IRT) within a whole-body calorimeter at baseline and at 2 hours post-cold exposure. 18F-fluorodeoxyglucose (18F-FDG) positron-emission tomography/magnetic resonance (PET/MR) imaging scans were performed post-cold exposure. PET sBAT mean standardized uptake value (SUV mean), MR supraclavicular fat fraction (sFF), anterior supraclavicular maximum temperature (Tscv max) and EE change (%) after cold exposure were used to quantify sBAT activity. Main Outcome Measures Plasma FGF21, leptin, adiponectin, and tumor necrosis factor alpha (TNFα) at baseline and 2 hours post-cold exposure. Body composition at baseline by dual-energy x-ray absorptiometry (DXA). Results Plasma FGF21 and adiponectin levels were significantly reduced after cold exposure in BAT-positive subjects but not in BAT-negative subjects. Leptin concentration was significantly reduced in both BAT-positive and BAT-negative participants after cold exposure. Adiponectin concentration at baseline was positively strongly associated with sBAT PET SUV mean (coefficient, 3269; P = 0.01) and IRT Tscv max (coefficient, 6801; P  = 0.03), and inversely correlated with MR sFF (coefficient, −404; P  = 0.02) after cold exposure in BAT-positive subjects but not in BAT-negative subjects. Conclusion Higher adiponectin concentrations at baseline indicate a greater cold-induced sBAT activity, which may be a novel predictor for sBAT activity in healthy BAT-positive adults. Highlights A higher adiponectin concentration at baseline was associated with higher cold-induced supraclavicular BAT PET SUV mean and IRT Tscv max, and lower MR supraclavicular FF. Adiponectin levels maybe a novel predictor for cold-induced sBAT activity.


Metabolism ◽  
2014 ◽  
Vol 63 (3) ◽  
pp. 312-317 ◽  
Author(s):  
Elayne Hondares ◽  
José M. Gallego-Escuredo ◽  
Pavel Flachs ◽  
Andrea Frontini ◽  
Ruben Cereijo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document