scholarly journals Troglitazone Treatment Increases Protein Kinase B Phosphorylation in Skeletal Muscle of Normoglycemic Subjects at Risk for the Development of Type 2 Diabetes

Diabetes ◽  
2002 ◽  
Vol 51 (9) ◽  
pp. 2691-2697 ◽  
Author(s):  
M. M. Meyer ◽  
K. Levin ◽  
T. Grimmsmann ◽  
N. Perwitz ◽  
A. Eirich ◽  
...  
2014 ◽  
Vol 306 (9) ◽  
pp. E1065-E1076 ◽  
Author(s):  
Hidemitsu Sakagami ◽  
Yuichi Makino ◽  
Katsutoshi Mizumoto ◽  
Tsubasa Isoe ◽  
Yasutaka Takeda ◽  
...  

Defects in glucose uptake by the skeletal muscle cause diseases linked to metabolic disturbance such as type 2 diabetes. The molecular mechanism determining glucose disposal in the skeletal muscle in response to cellular stimuli including insulin, however, remains largely unknown. The hypoxia-inducible factor-1α (HIF-1α) is a transcription factor operating in the cellular adaptive response to hypoxic conditions. Recent studies have uncovered pleiotropic actions of HIF-1α in the homeostatic response to various cellular stimuli, including insulin under normoxic conditions. Thus we hypothesized HIF-1α is involved in the regulation of glucose metabolism stimulated by insulin in the skeletal muscle. To this end, we generated C2C12myocytes in which HIF-1α is knocked down by short-hairpin RNA and examined the intracellular signaling cascade and glucose uptake subsequent to insulin stimulation. Knockdown of HIF-1α expression in the skeletal muscle cells resulted in abrogation of insulin-stimulated glucose uptake associated with impaired mobilization of glucose transporter 4 (GLUT4) to the plasma membrane. Such defect seemed to be caused by reduced phosphorylation of the protein kinase B substrate of 160 kDa (AS160). AS160 phosphorylation and GLUT4 translocation by AMP-activated protein kinase activation were abrogated as well. In addition, expression of the constitutively active mutant of HIF-1α (CA-HIF-1α) or upregulation of endogenous HIF-1α in C2C12cells shows AS160 phosphorylation comparable to the insulin-stimulated level even in the absence of insulin. Accordingly GLUT4 translocation was increased in the cells expressing CA-HIF1α. Taken together, HIF-1α is a determinant for GLUT4-mediated glucose uptake in the skeletal muscle cells thus as a possible target to alleviate impaired glucose metabolism in, e.g., type 2 diabetes.


Diabetes ◽  
2002 ◽  
Vol 51 (7) ◽  
pp. 2074-2081 ◽  
Author(s):  
N. Musi ◽  
M. F. Hirshman ◽  
J. Nygren ◽  
M. Svanfeldt ◽  
P. Bavenholm ◽  
...  

Nutrients ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2488 ◽  
Author(s):  
Katarzyna Szkudelska ◽  
Marzanna Deniziak ◽  
Iwona Hertig ◽  
Tatiana Wojciechowicz ◽  
Marianna Tyczewska ◽  
...  

Resveratrol exhibits a pleiotropic, favorable action under various pathological conditions, including type 2 diabetes. However, its anti-diabetic effects in animal models and human trials have not been fully elucidated. The aim of the present study was to determine whether resveratrol is capable of inducing beneficial changes in the Goto-Kakizaki rat, a spontaneous model of diabetes, which in several aspects is similar to type 2 diabetes in humans. Goto-Kakizaki (GK) rats and control Sprague–Dawley (SD) rats were treated intragastrically with resveratrol (20 mg/kg b.w./day) for 10 weeks. Then, a glucose tolerance test was performed and levels of some adipokines in blood were measured. Moreover, lipid contents in skeletal muscle and liver tissues, along with the expression and phosphorylation of pivotal enzymes (AMP—activated protein kinase—AMPK, acetyl-CoA carboxylase—ACC, protein kinase B—Akt) in these tissues were determined. Histology of pancreatic islets was also compared. GK rats non-treated with resveratrol displayed a marked glucose intolerance and had increased lipid accumulation in the skeletal muscle. Moreover, upregulation of the expression and phosphorylation of AMPK, ACC and Akt was shown in the muscle tissue of GK rats. Those rats also had an abnormal structure of pancreatic islets compared with control animals. However, treatment with resveratrol improved glucose tolerance and prevented lipid accumulation in the skeletal muscle of GK rats. This effect was associated with a substantial normalization of expression and phosphorylation of ACC and Akt. In GK rats subjected to resveratrol therapy, the structure of pancreatic islets was also clearly improved. Moreover, blood adiponectin and leptin levels were partially normalized by resveratrol in GK rats. It was revealed that resveratrol ameliorates key symptoms of diabetes in GK rats. This compound improved glucose tolerance, which was largely linked to beneficial changes in skeletal muscle. Resveratrol also positively affected pancreatic islets. Our new findings show that resveratrol has therapeutic potential in GK rats.


Diabetologia ◽  
2007 ◽  
Vol 50 (11) ◽  
pp. 2366-2373 ◽  
Author(s):  
M. Straczkowski ◽  
I. Kowalska ◽  
M. Baranowski ◽  
A. Nikolajuk ◽  
E. Otziomek ◽  
...  

2005 ◽  
Vol 99 (1) ◽  
pp. 330-337 ◽  
Author(s):  
Niels Jessen ◽  
Laurie J. Goodyear

Contracting skeletal muscles acutely increases glucose transport in both healthy individuals and in people with Type 2 diabetes, and regular physical exercise is a cornerstone in the treatment of the disease. Glucose transport in skeletal muscle is dependent on the translocation of GLUT4 glucose transporters to the cell surface. It has long been believed that there are two major signaling mechanisms leading to GLUT4 translocation. One mechanism is insulin-activated signaling through insulin receptor substrate-1 and phosphatidylinositol 3-kinase. The other is an insulin-independent signaling mechanism that is activated by contractions, but the mediators of this signal are still unknown. Accumulating evidence suggests that the energy-sensing enzyme AMP-activated protein kinase plays an important role in contraction-stimulated glucose transport. However, more recent studies in transgenic and knockout animals show that AMP-activated protein kinase is not the sole mediator of the signal to GLUT4 translocation and suggest that there may be redundant signaling pathways leading to contraction-stimulated glucose transport. The search for other possible signal intermediates is ongoing, and calcium, nitric oxide, bradykinin, and the Akt substrate AS160 have been suggested as possible candidates. Further research is needed because full elucidation of an insulin-independent signal leading to glucose transport would be a promising pharmacological target for the treatment of Type 2 diabetes.


2004 ◽  
Vol 89 (3) ◽  
pp. 1301-1311 ◽  
Author(s):  
Heidi Storgaard ◽  
Christine B. Jensen ◽  
Marie Björnholm ◽  
Xiao Mei Song ◽  
Sten Madsbad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document