scholarly journals Boron and other trace element constraints on the slab-derived component in Quaternary volcanic rocks from the Southern Volcanic Zone of the Andes

2013 ◽  
Vol 47 (2) ◽  
pp. 185-199 ◽  
Author(s):  
HIRONAO SHINJOE ◽  
YUJI ORIHASHI ◽  
JOS^|^Eacute; A. NARANJO ◽  
DAIJI HIRATA ◽  
TOSHIAKI HASENAKA ◽  
...  
2018 ◽  
Vol 353 ◽  
pp. 83-94 ◽  
Author(s):  
Carlos Cardona ◽  
Andrés Tassara ◽  
Fernando Gil-Cruz ◽  
Luis Lara ◽  
Sergio Morales ◽  
...  

1986 ◽  
Vol 123 (2) ◽  
pp. 153-166 ◽  
Author(s):  
John Ludden ◽  
Claude Hubert ◽  
Clement Gariépy

AbstractBased on structural, geochemical, sedimentological and geochronological studies, we have formulated a model for the evolution of the late Archaean Abitibi greenstone belt of the Superior Province of Canada. The southern volcanic zone (SVZ) of the belt is dominated by komatiitic to tholeiitic volcanic plateaux and large, bimodal, mafic-felsic volcanic centres. These volcanic rocks were erupted between approximately 2710 Ma and 2700 Ma in a series of rift basins formed as a result of wrench-fault tectonics.The SVZ superimposes an older volcanic terrane which is characterized in the northern volcanic zone (NVZ) of the Abitibi belt and is approximately 2720 Ma or older. The NVZ comprises basaltic to andesitic and dacitic subaqueous massive volcanics which are cored by comagmatic sill complexes and layered mafic-anorthositic plutonic complexes. These volcanics are overlain by felsic pyroclastic rocks that were comagmatic with the emplacement of tonalitic plutons at 2717 ±2 Ma.The tectonic model envisages the SVZ to have formed in a series of rift basins which dissected an earlier formed volcanic arc (the NVZ). Analogous rift environments have been postulated for the Hokuroko basin of Japan, the Taupo volcanic zone of New Zealand and the Sumatra and Nicaragua arcs. The difference between rift related ‘submergent’ volcanism in the SVZ and ‘emergent’ volcanism in the NVZ resulted in the contrasting metallogenic styles, the former being characterized by syngenetic massive sulphide deposits, whilst the latter was dominated by epigenetic ‘porphyry-type’ Cu(Au) deposits.


Geothermics ◽  
2020 ◽  
Vol 87 ◽  
pp. 101828 ◽  
Author(s):  
J. Sepúlveda ◽  
G. Arancibia ◽  
E. Molina ◽  
J.P. Gilbert ◽  
M. Duda ◽  
...  

2021 ◽  
Author(s):  
Fernanda Silva Santos ◽  
Carlos Sommer ◽  
Mauricio Haag ◽  
Walter Báez ◽  
Alberto Caselli ◽  
...  

Monogenetic volcanoes are among the most common volcanic landforms on Earth. The morphology and distribution of small volcanoes can provide important information about eruption dynamics and tectonics. The Southern Volcanic Zone of the Andes (CSVZ) comprises one of the most active magmatic regions on Earth. Characterized by the presence of polygenetic volcanoes and calderas in a complex tectonic setting, this region also hosts hundreds of small, back-arc monogenetic volcanoes. In this contribution, we apply a Geographic Information System (GIS) that combines imagery data and digital elevation models to establish the first comprehensive dataset of monogenetic volcanoes in the CSVZ (38° to 40° S), exploring their eruption dynamics and relationship to tectonic and structural processes. Combining spatial analysis and geomorphological observations, we identify the presence of 356 monogenetic volcanoes distributed into nine clusters, now grouped in the Zapala Volcanic Field (ZVF). The ZVF is marked by the predominance of cinder cones (80%) followed by phreatomagmatic volcanoes (20%), suggesting some influence of external water in the eruption dynamics. Generally, monogenetic vents present a clear association with local and regional lineaments, suggesting a strong structural control on the occurrence of the monogenetic deposits. The higher vent densities are observed in the southern Loncopué Though, an important extensional feature related to tearing of the subducted Nazca plate underneath the South American Plate. Morphometric parameters of cinder cones indicate variable stress orientations in the CSVZ that possibly result from the oblique tectonics in the region. From north to south, the maximum principal stress rotates from NE-SW to E-W and becomes progressively less constrained as it distances from the current magmatic arc. Based on the relative ages, we map the evolution of monogenetic volcanism through time. Our results suggest a waning in the monogenetic activity in ZVF over time. When compared to monogenetic fields in the Central Andes, the ZVF is marked by higher vent densities and number of phreatomagmatic landforms, with the absence of lava domes. This ultimately reflects the contrasting crustal structure and climate conditions of these two regions.


Sign in / Sign up

Export Citation Format

Share Document