The tectonic evolution of the Abitibi greenstone belt of Canada

1986 ◽  
Vol 123 (2) ◽  
pp. 153-166 ◽  
Author(s):  
John Ludden ◽  
Claude Hubert ◽  
Clement Gariépy

AbstractBased on structural, geochemical, sedimentological and geochronological studies, we have formulated a model for the evolution of the late Archaean Abitibi greenstone belt of the Superior Province of Canada. The southern volcanic zone (SVZ) of the belt is dominated by komatiitic to tholeiitic volcanic plateaux and large, bimodal, mafic-felsic volcanic centres. These volcanic rocks were erupted between approximately 2710 Ma and 2700 Ma in a series of rift basins formed as a result of wrench-fault tectonics.The SVZ superimposes an older volcanic terrane which is characterized in the northern volcanic zone (NVZ) of the Abitibi belt and is approximately 2720 Ma or older. The NVZ comprises basaltic to andesitic and dacitic subaqueous massive volcanics which are cored by comagmatic sill complexes and layered mafic-anorthositic plutonic complexes. These volcanics are overlain by felsic pyroclastic rocks that were comagmatic with the emplacement of tonalitic plutons at 2717 ±2 Ma.The tectonic model envisages the SVZ to have formed in a series of rift basins which dissected an earlier formed volcanic arc (the NVZ). Analogous rift environments have been postulated for the Hokuroko basin of Japan, the Taupo volcanic zone of New Zealand and the Sumatra and Nicaragua arcs. The difference between rift related ‘submergent’ volcanism in the SVZ and ‘emergent’ volcanism in the NVZ resulted in the contrasting metallogenic styles, the former being characterized by syngenetic massive sulphide deposits, whilst the latter was dominated by epigenetic ‘porphyry-type’ Cu(Au) deposits.

1992 ◽  
Vol 29 (10) ◽  
pp. 2211-2225 ◽  
Author(s):  
E. H. Chown ◽  
Réal Daigneault ◽  
Wulf Mueller ◽  
J. K. Mortensen

The Archean Abitibi Subprovince has been divided formally into a Northern Volcanic Zone (NVZ), including the entire northern part of the subprovince, and a Southern Volcanic Zone (SVZ) on the basis of distinct volcano-sedimentary successions, related plutonic suites, and precise U–Pb age determinations. The NVZ has been further formally subdivided into (i) a Monocyclic Volcanic Segment (MVS) composed of an extensive subaqueous basalt plain with scattered felsic volcanic complexes (2730–2725 Ma), interstratified with or overlain by linear volcaniclastic sedimentary basins; and (ii) a Polycyclic Volcanic Segment (PVS) comprising a second mafic–felsic volcanic cycle (2722–2711 Ma) and a sedimentary assemblage with local shoshonitic volcanic rocks.A sequence of deformational events (D1–D6) over a period of 25 Ma in the NVZ is consistent with a major compressional event. North–south shortening was first accommodated by near-vertical east-trending folds and, with continued deformation, was concentrated along major east-trending fault zones and contact-strain aureoles around synvolcanic intrusions, both with a downdip movement. Subsequent dextral strike-slip movement occurred on southeast-trending faults and major east-trending faults which controlled the emplacement of syntectonic plutons (2703–2690 Ma).This study suggests that the NVZ, which is a coherent geotectonic unit, initially formed as a diffuse volcanic arc, represented by the MVZ, in which the northern part, represented by the PVS, evolved into a mature arc as documented by a second volcanic and sedimentary cycle associated with major plutonic accretion. Volcano-sedimentary evolution and associated plutonism, as well as structural evolution, are best explained by a plate-tectonic model involving oblique convergence.


2011 ◽  
Vol 48 (4) ◽  
pp. 728-756 ◽  
Author(s):  
Pierre-Simon Ross ◽  
Jean Goutier ◽  
Patrick Mercier-Langevin ◽  
Benoît Dubé

The Archean Blake River Group (BRG) of Ontario and Quebec is dominated by submarine mafic to intermediate lavas, with more restricted felsic volcanic rocks. Given the good quality of outcrop, and high level of preservation of some BRG rocks, the mafic to intermediate lavas were used in the 1970s and 1980s to better understand the evolution of massive and pillowed submarine flows, and their associated fragmental facies (pillow breccias, hyaloclastite). Potentially, the BRG could also represent a useful volcanic succession for the study of explosive submarine eruption products in the ancient record. Before this is possible, however, a regional inventory of the mafic to intermediate volcaniclastic units is needed to clarify their characteristics and origins. In this paper, we compare and contrast volcaniclastic rocks from three areas within the same formation of the northern BRG in Quebec: the Monsabrais area, the Lac Duparquet area, and the D’Alembert tuff area. Close examination reveals pronounced differences in terms of lateral continuity, thickness, grading, bedding, clast shapes, textures, etc. in the volcaniclastic rocks. These differences are interpreted to reflect vastly different emplacement processes, ranging from hyaloclastite generation as a result of self-fragmentation and lava contact with water (dominant in the Monsabrais and Lac Duparquet areas) to aqueous density currents likely fed directly by explosive submarine eruptions (dominant in the D’Alembert tuff).


1992 ◽  
Vol 29 (7) ◽  
pp. 1448-1458 ◽  
Author(s):  
M. R. Laflèche ◽  
C. Dupuy ◽  
J. Dostal

The late Archean Blake River Group volcanic sequence forms the uppermost part of the southern Abitibi greenstone belt in Quebec. The group is mainly composed of mid-ocean-ridge basalt (MORB)-like tholeiites that show a progressive change of several incompatible trace element ratios (e.g., Nb/Th, Nb/Ta, La/Yb, and Zr/Y) during differentiation. The compositional variations are inferred to be the result of fractional crystallization coupled with mixing–contamination of tholeiites by calc-alkaline magma which produced the mafic–intermediate lavas intercalated with the tholeiites in the uppermost part of the sequence. The MORB-like tholeiites were probably emplaced in a back-arc setting.


1977 ◽  
Vol 14 (4) ◽  
pp. 539-550 ◽  
Author(s):  
A. J. Naldrett ◽  
A. M. Goodwin

Six hundred and ninety samples of volcanic rocks from the Blake River Group of the Abitibi Greenstone Belt have analysed for sulfur on a Leco sulfur analyser. Basaltic rocks have been subdivided into komatiites, Fe-rich tholeiites, Al-rich basalts, and intermediate basalts with more than 1% TiO2 and with less than 1% TiO2. Andesites have been subdivided into Fe-rich types, Al-rich types, and others. All dacites are grouped together as are all rhyolites. Rocks of many of these subdivisions occur at more than one level within the Blake River stratigraphy. Within a given rock subdivision, the sulfur content is distributed log normally. When the geometric mean of the sulfur content of each of the subdivisions outlined above is plotted against the arithmetic mean of the FeO content, a smooth curve is obtained, with sulfur increasing markedly with increase in FeO. The data give no indication of any change in sulfur content of a given rock subdivision with stratigraphic height. The arithmetic mean of the sulfur content of each rock subdivision also increases with the mean FeO content, although less smoothly than the geometric mean. The arithmetic means of sulfur content fall within the scatter of points obtained experimentally for the sulfur content of sulfur saturated basalts, supporting the contention that the Blake River rocks may have been saturated with sulfur at the time of their extrusion.


1987 ◽  
Vol 24 (12) ◽  
pp. 2551-2567 ◽  
Author(s):  
Osamu Ujike ◽  
A. M. Goodwin

Felsic magma petrogenesis was studied by analyzing 24 stratigraphically controlled Archean andesite-to-rhyolite lava flows of both tholeiitic and calc-alkalic affinity from the upper Noranda Subgroup, Quebec, using instrumental neutron activation and X-ray fluorescence techniques. The lavas have moderate values of [La/Yb]N (0.9–3.8) and low values of 100 × Th/Zr (~1). According to calculations following batch partial melting and Rayleigh fractional crystallization models, both the calc-alkalic and tholeiitic felsic volcanic rocks are probably products of shallow-level fractional crystallization of mafic parental magmas formed respectively by lower (~7 % for calc-alkalic) and higher (~14% for tholeiitic) degrees of partial melting of a primitive mantle source.Contribution to the magma genesis from plausible crustal materials was negligible. A back-arc-type diapirism is geochemically suggested for the tectonic model of origin of Noranda felsic magmas, in conformity with geological observations. Felsic volcanic rocks with compositions analogous to the studied samples exist in several other Archean terrains of the Canadian Shield, suggesting thereby that the late Archean sialic crust was at least in part produced by volcanic rocks ultimately derived from the primitive mantle.


1995 ◽  
Vol 68 (1-3) ◽  
pp. 59-87 ◽  
Author(s):  
I.J. Graham ◽  
J.W. Cole ◽  
R.M. Briggs ◽  
J.A. Gamble ◽  
I.E.M. Smith

1987 ◽  
Vol 24 (9) ◽  
pp. 1916-1919 ◽  
Author(s):  
J. Kalliokoski

A belt of Archean quartzose metasedimentary gneisses with minor mafic volcanic rocks (the Pontiac Group) lies south of the Blake River and older Archean mafic volcanic rocks of the Abitibi Greenstone Belt, and is separated from them by the Larder Lake – Cadillac Break. To the west of the Pontiac Group, on strike, is the Archean Larder Lake Group of turbidite conglomerate, argillite, limestone, and iron formation with abundant mafic flows and intrusions. These strata also lie south of the Larder Lake – Cadillac Break and south of the Blake River and older Archean mafic volcanic rocks. The western contact between the Pontiac and Larder Lake groups is covered by a narrow north–south strip of Proterozoic Cobalt sedimentary rocks. On the basis of gravity work that compares the Bouguer gravity anomaly gradient across the Cadillac Break with that across the west margin of the Pontiac Group, it is proposed that the Larder Lake and Pontiac groups are separated by a north–south fault and that the Pontiac Group represents a lithologically distinct uplifted block. The Pontiac block may be an Archean terrane.


Sign in / Sign up

Export Citation Format

Share Document