Evaluation of hot cracking susceptibility on laser welded aluminum alloy using coaxially arranged multiple-beam laser

2020 ◽  
Vol 32 (2) ◽  
pp. 022072 ◽  
Author(s):  
Minjung Kang ◽  
Cheolhee Kim
2020 ◽  
Vol 64 (6) ◽  
pp. 1077-1088
Author(s):  
Hossain Ebrahimzadeh ◽  
Hassan Farhangi ◽  
Seyed Ali Asghar Akbari Mousavi

2021 ◽  
Vol 1033 ◽  
pp. 24-30
Author(s):  
Yi Dan Zeng ◽  
Li Tong He ◽  
Jin Zhang

One of the main reasons for the scrap of cast thin-wall frame aluminum alloy castings is deformation and cracking. It is an effective method for solving the problem by predicting the distribution of casting stress, clarifying the size of the deformation and the location of the crack, and taking necessary measures in the process. This paper uses the ProCAST software to simulate the thermal stress coupling of A356 thin-walled frame castings, analyzes the influence of pouring temperature, pouring speed and mold temperature on the stress field distribution of castings, predicts the hot cracking trend and deformation, and optimizes Casting process..


2009 ◽  
Author(s):  
Richard Burgett ◽  
Vyacheslav Aranchuk ◽  
James Sabatier ◽  
Steven S. Bishop

2004 ◽  
Author(s):  
Sriram V. Narasimhan ◽  
Richard L. Goodwin ◽  
Thomas K. Borg ◽  
Darren M. Dawson ◽  
Bruce Z. Gao

2016 ◽  
Vol 835 ◽  
pp. 161-166 ◽  
Author(s):  
Hsuan Liang Lin ◽  
Wun Kai Wang

The objective of this study is to investigate the effects of activating fluxes on the weld bead geometry, hot cracking susceptibility and mechanical property of A356 and 6061 aluminum alloy dissimilar welds in the gas metal arc (GMA) welding process. In this activated GMA welding process, there were nine single-component fluxes used in the initial experiment to evaluate the penetration capability of butt-joint GMA welds. The grey relational analysis (GRA) was employed to obtain the better weld bead geometry of welds that were considered with multiple quality characteristics. Based on higher grey relational grade (GRG), four single-component fluxes were selected to create mixed-component flux in the next stage. The experimental results showed that the GMA welds coated with activating flux were provided with better geometry of dissimilar welds. The experimental procedure of activated GMA welding process not only produced a significant increase in tensile strength of welds, but also improved the hot cracking susceptibility of aluminum alloy welds.


2016 ◽  
Vol 83 ◽  
pp. 463-471 ◽  
Author(s):  
M. Holzer ◽  
K. Hofmann ◽  
V. Mann ◽  
F. Hugger ◽  
S. Roth ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6881
Author(s):  
Yongtao Xu ◽  
Zhifeng Zhang ◽  
Zhihua Gao ◽  
Yuelong Bai ◽  
Purui Zhao ◽  
...  

In this paper, the effect of adding the refiner Sc to the high Zn/Mg ratio 7xxx series aluminum alloy melt on the hot tearing performance, microstructure, and mechanical properties of the alloy is studied. The hot tearing performance test (CRC) method is used to evaluate the hot tearing performance of the alloy. The squeeze casting process was used to form solid cylindrical parts to analyze the structure and properties of the alloy. This study shows that the hot cracking sensitivity of the alloy after the addition of the refiner Sc is significantly reduced. The ingot grain size is significantly reduced, and the average grain size is reduced from about 86 μm to about 53 μm. While the mechanical properties are significantly improved, and the tensile strength reduced from 552 MPa is increased to 571 MPa, and the elongation rate is increased from 11% to 14%.


2019 ◽  
Vol 944 ◽  
pp. 448-457
Author(s):  
Hong Xi Chen ◽  
Li Cui ◽  
Dong Qi Lu ◽  
Yao Qing Chang ◽  
Xu Xia ◽  
...  

A new dual beam laser deep penetration welding technology for lap joint of 1.5 mm thick aluminum alloy and high strength steel was explored in this paper, and the effects of three different beam energy ratios (RS=0.25,0.33,0.5) on weld formation, interface microstructure and mechanical properties were studied. The result shows that under certain conditions of other parameters, double beam laser deep penetration welding process can be applied to lap joint of aluminum alloy / high strength steel with good weld shape when RS=0.25,0.33,0.5. As RS increases from 0.25 to 0.5, the penetration of the weld reduces from 575 μm to 424.2μm, the thickness of intermetallic compound (IMC) layer at the interface between aluminum alloy and weld metal reduces from 3.4 μm to 2.5 μm, the average microhardness of the IMC layer decreases from 771.1 HV to 571.9 HV, the mechanical resistance of the joint raises from 95.7N/mm to 115.2N/mm. When RS=0.5, double beam laser deep penetration welding of aluminum alloy / high-strength steel joints has the highest mechanical resistance of joints, because of the relatively good plastic ductility of the joint.


2018 ◽  
Vol 261 ◽  
pp. 184-192 ◽  
Author(s):  
Guang Yang ◽  
Jie Sheng ◽  
Wei Tong ◽  
Blair E. Carlson ◽  
Hui-Ping Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document