Void detection and fiber extraction for statistical characterization of fiber-reinforced polymers

2020 ◽  
Vol 2020 (14) ◽  
pp. 250-1-250-7
Author(s):  
Camilo Aguilar ◽  
Imad A. Hanhan ◽  
Ronald F. Agyei ◽  
Michael D. Sangid ◽  
Mary Comer

In this paper we propose a surrogate approach to extract fibers and voids from polymer matrix composites by combining results obtained from model-based methods to train convolutional neural networks. This approach focuses on microscopy images where labeled data is not readily available, but purely model based approaches can be too slow due to their computational complexity. In addition, we propose an encoder-decoder alternative to a fiber instance segmentation paradigm, showing a speedup in training and inference times without a significant decrease in accuracy with respect to alternative methods. The neural networks approach represent a significant speedup over model based approaches and can correctly capture most fibers and voids in large volumes for further statistical analysis of the data.

Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 331
Author(s):  
Alessia Serena Perna ◽  
Antonello Astarita ◽  
Pierpaolo Carlone ◽  
Xavier Guthmann ◽  
Antonio Viscusi

Polymer matrix composites are finding never-ending widespread uses in the last decades; one recent tendency is to metallize their surface to further widen their field of application. Cold-spray deposition is one of the most promising techniques that can be adopted to this aim. Cold-spray deposition on polymers is in its early stage and more experimental work is required to fully understand the phenomena ruling the deposition. In this paper, the results of nanoindentation measurements on cold-spray coatings on various substrates will be presented and discussed. Polypropylene was used as matrix while carbon and glass fibers have been used as reinforcement, both steel and aluminum have been used as feedstock material for the cold-spray deposition. Nanoindentations tests have been then carried out on all the different samples; the influence of the fibers and of the powders sprayed on the behavior of the coatings is discussed in light of the experimental outcomes.


2010 ◽  
Vol 139-141 ◽  
pp. 84-89 ◽  
Author(s):  
Hong Chang Qu ◽  
Xiao Zhou Xia ◽  
Hong Yuan Li ◽  
Zhi Qiang Xiong

The mechanical behavior of polymer–matrix composites uniaxially reinforced with carbon or glass fibers subjected to compression/tension perpendicular to the fibers was studied using computational micromechanics. This is carried out using the finite element simulation of a representative volume element of the microstructure idealized as a random dispersion of parallel fibers embedded in the polymeric matrix. Two different interface strength values were chosen to explore the limiting cases of composites with strong or weak interfaces, and the actual failure mechanisms (plastic deformation of the matrix and interface decohesion) are included in the simulations through the corresponding constitutive models. Composites with either perfect or weak fiber/matrix interfaces (the latter introduced through cohesive elements) were studied to assess the influence of interface strength on the composite behavior. It was found that the composite properties under transverse compression/tension were mainly controlled by interface strength and the matrix yield strength in uniaxial compression/tension.


2014 ◽  
Vol 88 ◽  
pp. 15-20 ◽  
Author(s):  
Rainer Gadow ◽  
Patrick Weichand

Polymer Matrix Composites (PMC) are often used in lightweight applications due to their excellent mechanical properties combined with a low density. The manufacturing technologies are fully developed and raw materials are cheap. The limiting factor of these reinforced polymers is the maximum service temperature. Ceramic Matrix Composites (CMC) are suitable for service temperatures up to 1500 °C and more. These composites are composed of ceramic matrices combined with ceramic fibers based on alumina or silicon carbide. This class of composites is handicapped by the high cost of processing and raw materials and therefore only attractive for applications in astronautics and military aviation. Composite materials, bridging the gap between PMC and CMC, are manufactured by the use of polysiloxanes, carbon-and basalt fibers. Such competitive free formable Hybrid-composites are capable for service temperatures up to 800 °C in oxidative atmosphere. In order to make the material attractive also for series applications, manufacturing technologies like filament wet winding, Resin Transfer Moulding (RTM) or pressing techniques are employed. Beside the improved thermal resistivity in comparison to reinforced polymers and light metals, a major benefit of SiOC composites is investigated in the field of friction materials. The excellent properties in wear resistance and an adjustable coefficient of friction make it an interesting alternative for CFC and CMC.


2001 ◽  
Vol 54 (1) ◽  
pp. 97-103 ◽  
Author(s):  
Xiaolin Zhu ◽  
Hanzhen Xu ◽  
Junqing Lin

This paper presents a concept on the subjective ship domain. The factors related to the domain are discussed. A method based on the neural networks is used to establish a model of the domain that considers the effects of visibility and manoeuvrability, which can react quickly to various ships within a certain range.


Crystals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 811
Author(s):  
Afaq Ahmad ◽  
Vagelis Plevris ◽  
Qaiser-uz-Zaman Khan

Recently, the use of fiber-reinforced polymers (FRP)-confinement has increased due to its various favorable effects on concrete structures, such as an increase in strength and ductility. Therefore, researchers have been attracted to exploring the behavior and efficiency of FRP-confinement for concrete structural elements further. The current study investigates improved strength and strain models for FRP confined concrete cylindrical elements. Two new physical methods are proposed for use on a large preliminary evaluated database of 708 specimens for strength and 572 specimens for strain from previous experiments. The first approach is employing artificial neural networks (ANNs), and the second is using the general regression analysis technique for both axial strength and strain of FRP-confined concrete. The accuracy of the newly proposed strain models is quite satisfactory in comparison with previous experimental results. Moreover, the predictions of the proposed ANN models are better than the predictions of previously proposed models based on various statistical indices, such as the correlation coefficient (R) and mean square error (MSE), and can be used to assess the members at the ultimate limit state.


2021 ◽  
pp. 002199832110316
Author(s):  
F Gagliardi ◽  
R Conte ◽  
G Ambrogio

Polymers constitute the most employed reinforced matrices to achieve composite materials. Carbon and glass fibers are the reinforcements that are mainly utilized to improve specific properties for both thermoplastics and thermosets creating a new class of materials, which has been applied in several industrial fields. Various products made of fiber reinforced polymers are available on the market and at their own end-of-life, they must be reclaimed and remanufactured, properly, in an ideal recycling circular economy. The aim of this review is to point out the progress on fiber reclaiming from these materials, providing an overview on the most employed strategies and highlighting their main technological limits. Specifically, first, mechanical, thermal and chemical reclaiming processes have been contextualized introducing their peculiarities. Subsequently, the attention has been focalized on the new research trends proposed in the last years showing the direction, where the research is moving to. The processes have been also classified in terms of tensile strength of the reclaimed fibers and in terms of the energy required to be performed. Finally, design for reclaiming and remanufacturing treatments have been also considered pointing out the different approaches that can be pursued as valuable solutions to strengthen the recycling capabilities encouraging as much as possible the recovering of the polymeric matrix composites.


Author(s):  
Ru-Min Wang ◽  
Shui-Rong Zheng ◽  
Ya-Ping Zheng

Sign in / Sign up

Export Citation Format

Share Document