scholarly journals Influence of Acquisition Parameters on Pigment Classification using Hyperspectral Imaging

Author(s):  
Dipendra J. Mandal ◽  
Sony George ◽  
Marius Pedersen ◽  
Clotilde Boust

Pigment classification of paintings is considered an important task in the field of cultural heritage. It helps to analyze the object and to know its historical value. This information is also essential for curators and conservators. Hyperspectral imaging technology has been used for pigment characterization for many years and has potential in its scientific analysis. Despite its advantages, there are several challenges linked with hyperspectral image acquisition. The quality of such acquired hyperspectral data can be influenced by different parameters such as focus, signal-to-noise ratio, illumination geometry, etc. Among several, we investigated the effect of four key parameters, namely focus distance, signal-to-noise ratio, integration time, and illumination geometry on pigment classification accuracy for a mockup using hyperspectral imaging in visible and near-infrared regions. The results obtained exemplify that the classification accuracy is influenced by the variation in these parameters. Focus distance and illumination angle have a significant effect on the classification accuracy compared to signal-to-noise ratio and integration time.

1999 ◽  
Vol 45 (9) ◽  
pp. 1621-1627 ◽  
Author(s):  
Jason J Burmeister ◽  
Mark A Arnold

Abstract Six putative measurement sites were evaluated for noninvasive sensing of blood glucose by first-overtone near-infrared spectroscopy. The cheek, lower lip, upper lip, nasal septum, tongue, and webbing tissue between the thumb and forefinger were examined. These sites were evaluated on the basis of their chemical and physical properties as they pertain to the noninvasive measurement of glucose. Critical features included the effective optical pathlength of aqueous material within the tissue and the percentage of body fat within the optical path. Aqueous optical paths of 5 mm are required to measure clinically relevant concentrations of glucose in the first-overtone region. All of the tested sites met this requirement. The percentage of body fat affects the signal-to-noise ratio of the measurement and must be minimized for reliable glucose sensing. The webbing tissue contains a considerable amount of fat tissue and is clearly the worse measurement site. All other sites possess substantially less fat, with the least amount of fat in tongue tissue. For this reason, the tongue provides spectra with the highest signal-to-noise ratio and is, therefore, the site of choice on the basis of spectral quality.


The Analyst ◽  
2016 ◽  
Vol 141 (12) ◽  
pp. 3601-3620 ◽  
Author(s):  
Chengli Wang ◽  
Xiaomin Li ◽  
Fan Zhang

Upconversion nanoparticles (UCNPs), which can emit ultraviolet/visible (UV/Vis) light under near-infrared (NIR) excitation, are regarded as a new generation of nanoprobes because of their unique optical properties, including a virtually zero auto-fluorescence background for the improved signal-to-noise ratio, narrow emission bandwidths and high resistance to photo-bleaching.


Micromachines ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 556
Author(s):  
Yuri Yoshida ◽  
Takumi Kawana ◽  
Eiichi Hoshino ◽  
Yasuyo Minagawa ◽  
Norihisa Miki

We demonstrate capture of event-related potentials (ERPs) using candle-like dry microneedle electrodes (CMEs). CMEs can record an electroencephalogram (EEG) even from hairy areas without any skin preparation, unlike conventional wet electrodes. In our previous research, we experimentally verified that CMEs can measure the spontaneous potential of EEG from the hairy occipital region without preparation with a signal-to-noise ratio as good as that of the conventional wet electrodes which require skin preparation. However, these results were based on frequency-based signals, which are relatively robust compared to noise contamination, and whether CMEs are sufficiently sensitive to capture finer signals remained unclear. Here, we first experimentally verified that CMEs can extract ERPs as good as conventional wet electrodes without preparation. In the auditory oddball tasks using pure tones, P300, which represent ERPs, was extracted with a signal-to-noise ratio as good as that of conventional wet electrodes. CMEs successfully captured perceptual activities. Then, we attempted to investigate cerebral cognitive activity using ERPs. In processing the vowel and prosody in auditory stimuli such as /itta/, /itte/, and /itta?/, laterality was observed that originated from the locations responsible for the process in near-infrared spectroscopy (NIRS) and magnetoencephalography experiments. We simultaneously measured ERPs with CMEs and NIRS in the oddball tasks using the three words. Laterality appeared in NIRS for six of 10 participants, although laterality was not clearly shown in the results, suggesting that EEGs have a limitation of poor spatial resolution. On the other hand, successful capturing of MMN and P300 using CMEs that do not require skin preparation may be readily applicable for real-time applications of human perceptual activities.


2018 ◽  
Vol 38 (11) ◽  
pp. 1104002
Author(s):  
余达 Yu Da ◽  
刘金国 Liu Jinguo ◽  
何昕 He Xin ◽  
何家维 He Jiawei ◽  
陈佳豫 Chen Jiayu ◽  
...  

1989 ◽  
Vol 111 ◽  
pp. 288-288
Author(s):  
Werner W. Weiss ◽  
Hartmut Schneider

AbstractThe group of pulsating CP2-stars (also called “rapidly oscillating Ap stars” provides asteroseismology with oscillation spectra of high accuracy. The potential as a diagnostic tool for modelling stellar interiors is widely appreciated. The identification of pulsation modes is important for such an analysis. However, this is rarely possible in an unambiguous manner. To improve the situation and to make use of additional information, we observed HD 128898 simultaneously spectroscopically and photometrically at ESO. For each of our individual CAT-CES spectra (1 minute integration time) it was thus possible to determine the pulsation phase at mid-exposure. A total of 887 spectra (R = 50000) were binned according to their pulsation phase and coadded to improve significantly the signal to noise ratio.


1989 ◽  
Vol 107 ◽  
pp. 245-255
Author(s):  
Jocelyn Tomkin

AbstractThe usefulness of high signal-to-noise-ratio spectra for both radial-velocity and abundance studies of Algol systems is emphasised. It is shown that division by a hot star is a worthwhile step in pursuit of this objective. A preliminary analysis of high signal-to-noise-ratio, red and near-infrared, Reticon observations of R CMa shows that its primary has solar CNO abundances within the 0.3 dex observational error. The low-mass (0.17 m⊙) secondary of this Algol system must have lost a large fraction of its original mass. Some of this material would have been extensively processed during the secondary’s main-sequence lifetime and would therefore have had a highly non-solar CNO-abundance distribution. The lack of serious contamination of the primary’s abundances is consistent with most, but not all, plausible mass-transfer scenarios.


Sign in / Sign up

Export Citation Format

Share Document