scholarly journals Effect of Fiber Volume Fraction and Test Method on the Scatter of Strength in Carbon Fiber-reinforced Aluminum Composite.

1992 ◽  
Vol 32 (8) ◽  
pp. 923-925 ◽  
Author(s):  
Yutaka Kagawa
2011 ◽  
Vol 331 ◽  
pp. 175-178
Author(s):  
Xiao Yuan Pei ◽  
Jia Lu Li

A study on dynamic mechanical properties of carbon fiber plain woven fabric (with fiber orientation of 30°/-60°) / epoxy resin laminated composites with different fiber volume fraction was carried out. The test method is single input single output free vibration of cantilever beam hammering modal analysis method. The effect of different fiber volume fraction on the modal parameters of laminated composites was analyzed. The experimental results show that with the fiber volume fraction increasing, the natural frequency of laminated composites becomes larger and damping ratio becomes smaller. The fiber volume fraction is greater, the peak value of natural frequency becomes higher and the attenuating degree of acceleration’ amplitude becomes slower.


2012 ◽  
Vol 182-183 ◽  
pp. 85-88
Author(s):  
Yan Gao ◽  
Jia Lu Li

A study on dynamic mechanical properties of carbon fiber plain woven fabric (with fiber orientation of 0°/90°) / epoxy resin laminated composites with different fiber volume fraction was carried out. The test method is single input single output free vibration of cantilever beam hammering modal analysis method. The effect of different fiber volume fraction on the modal parameters of laminated composites was analyzed. The experimental results show that with the fiber volume fraction increasing, the natural frequency of laminated composites becomes larger and damping ratio becomes smaller. The fiber volume fraction is greater, the peak value of natural frequency becomes higher and the attenuating degree of acceleration’ amplitude becomes slower.


2015 ◽  
Vol 813 ◽  
pp. 315-322
Author(s):  
Yan Li ◽  
Meng Ma

The effects of fiber orientation and volume fraction on electrical conductivity of unidirectional carbon fiber reinforced polymer (CFRP) were investigated. The unidirectional CFRP shows strong anisotropy in electrical properties. Composites with higher fiber volume fraction possess higher electrical conductivity, since the fibers are the only current path in the composites. Additionally, carbon nanotubes (CNTs) were mixed into the resin by high-pressure microfluidizer to improve the electrical properties of the composites. Results show that the electrical conductivity of the polymer matrix has been dramatically improved. The conductivity of CNTs modified CFRP composites is improved along fiber direction, while it remains at the same level in the transverse to fiber direction.


2015 ◽  
Vol 30 (5) ◽  
pp. 724-737 ◽  
Author(s):  
Bing Liu ◽  
Anchang Xu ◽  
Limin Bao

In the present article, a highly heat-resistant composite with a high fiber volume fraction ( Vf > 60%) was successfully manufactured using engineering plastic Nylon66 as matrix and carbon fabric as reinforcement by a solution impregnation molding method. The mechanical properties of the composite were investigated using a tensile measuring device. Mechanical analysis revealed the superior mechanical properties of the composite relative to those of previously reported carbon fiber-reinforced thermoplastics (CFRTPs). The cross section and fracture surface of the composite were characterized by scanning electron microscopy. The resin successfully impregnated the fiber bundles and the bonding strength of the fiber–resin interface was excellent. Dynamic mechanical analysis was used to evaluate the heat-resistant property of the composite. The composite exhibited a better heat-resistant property relative to that of the carbon fiber-reinforced crystalline co-polyester composite. To further verify the versatility of this method, super engineering plastic polyetherimide with a higher molecular weight was successfully employed as matrix to prepare CFRTP.


2012 ◽  
Vol 583 ◽  
pp. 150-153
Author(s):  
Qian Liu ◽  
Xiao Yuan Pei ◽  
Jia Lu Li

The modal properties of carbon fiber woven fabric (with fiber orientation of 45°/-45°) / epoxy resin composites with different fiber volume fraction were studied by using single input and single output free vibration of cantilever beam hammering modal analysis method. The effect of different fiber volume fraction on the modal parameters of laminated composites was analyzed. The experimental results show that with the fiber volume fraction increasing, the natural frequency of laminated composites becomes larger and damping ratio becomes smaller. The fiber volume fraction smaller, the peak value of natural frequency becomes lower and the attenuating degree of acceleration amplitude becomes faster.


2021 ◽  
pp. 002199832110112
Author(s):  
Qing Yang Steve Wu ◽  
Nan Zhang ◽  
Weng Heng Liew ◽  
Vincent Lim ◽  
Xiping Ni ◽  
...  

Propagation of ultrasonic wave in Carbon Fiber Reinforced Polymer (CFRP) is greatly influenced by the material’s matrix, resins and fiber volume ratio. Laser ultrasonic broadband spectral technique has been demonstrated for porosity and fiber volume ratio extraction on unidirection aligned CFRP laminates. Porosity in the matrix materials can be calculated by longitudinal wave attenuation and accurate fiber volume ratio can be derived by combined velocity through the high strength carbon fiber and the matrix material with further consideration of porosity effects. The results have been benchmarked by pulse-echo ultrasonic tests, gas pycnometer and thermal gravimetric analysis (TGA). The potentials and advantages of the laser ultrasonic technique as a non-destructive evaluation method for CFRP carbon fiber volume fraction evaluation were demonstrated.


Sign in / Sign up

Export Citation Format

Share Document