scholarly journals Numerical Simulation of Molten Steel Flow and Inclusions Motion Behavior in the Solidification Processes for Continuous Casting Slab

2014 ◽  
Vol 54 (1) ◽  
pp. 94-102 ◽  
Author(s):  
Shaowu Lei ◽  
Jiongming Zhang ◽  
Xinkai Zhao ◽  
Kai He
2011 ◽  
Vol 291-294 ◽  
pp. 423-427
Author(s):  
Yan Juan Jin ◽  
Xiao Chao Cui ◽  
Zhu Zhang

An inner-outer coupled cooling technology of molten steel for 1240×200mm slab continuous casting, that is to set an inner cooler—U shape pipes in the mold, is put forward in order to enhance the efficiency of transmitting heat and improve inner structure of billet. The flow status and solidification status of molten steel under coupling flow field and temperature field in inner-outer coupled cooling mold are simulated by using fluid dynamics software, and compare with those in traditional mold. It is found that setting inner cooler in the mold can make molten steel flow status even, which is favorable to floating up of the inclusion, quickening the solidification of steel liquid and improving the quality of billet.


Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 983 ◽  
Author(s):  
Xiaohui Sun ◽  
Bin Li ◽  
Haibiao Lu ◽  
Yunbo Zhong ◽  
Zhongming Ren ◽  
...  

The transient numerical model combined with the volume of fluid (VOF) approach is employed to investigate the steel/slag interface behavior under multifunction electromagnetic driving in a continuous casting slab mold. Here, electromagnetic stirring (EMS) and electromagnetic braking (EMBr), respectively, are chosen as flow multifunction control technologies in the upper and lower areas of the mold. The computational models are validated with measurement results. The results show that multifunction electromagnetic driving changes the flow pattern, which has the potential to simultaneously meet the requirements of the steel flow in the regions above and below the nozzle, ensuring the uniformity and activity of the molten steel in the upper region of the mold and avoiding the excessive depth of the impinging jet. After EMS, the steel forms a deflected circulation flow at the steel/slag interface, and the surface velocity distribution is more uniform. EMBr still has the function of stabilizing the meniscus when multifunction electromagnetic driving is applied. Taking wave height and wave amplitude as evaluation criteria, the influence of EMS and EMBr on the steel/slag interface can be evaluated and controlled to some extent by observing the key points.


2012 ◽  
Vol 557-559 ◽  
pp. 2257-2260
Author(s):  
Yan Juan Jin ◽  
Xiao Chao Cui ◽  
Yan Xia Chen

In the paper, flow status and solidification status of molten steel in inner-outer couple cooling mold in the filling process are simulated by using fluid dynamics software Flow-3d, and obtain distributing diagrams of flow field and temperature field and free-surface shape diagrams in the filling process. Influences of flow field and temperature field of filling process on solidification are analyzed in the slab continuous casting. It is indicated that inner cooler can improve molten steel flow status, which is favorable to inclusion in molten steel floating up, quicken the solidification rate of molten steel in the mold.


2012 ◽  
Vol 217-219 ◽  
pp. 1942-1945
Author(s):  
Zhu Zhang ◽  
Yan Juan Jin ◽  
Jun Ting Zhang

In the paper a inner-outer couple cooling technology of molten steel for 1240×200mm slab continuous casting, that is to set an inner cooler-U shape pipes in the mold, is put forward in order to enhance the efficiency of transmitting heat and improve the flow status of molten steel. The flow status of molten steel in inner-outer couple cooling mold is simulated by using fluid dynamics software. It is found that setting inner cooler in the mold can make molten steel flow status even, which partly act as electromagnetic trig and is favorable to inclusion in molten steel floating up.


2017 ◽  
Vol 48 (6) ◽  
pp. 3120-3131 ◽  
Author(s):  
Dongbin Jiang ◽  
Weiling Wang ◽  
Sen Luo ◽  
Cheng Ji ◽  
Miaoyong Zhu

Sign in / Sign up

Export Citation Format

Share Document