scholarly journals Local Buckling of Steel Plates in Composite Structures under Combined Bending and Compression

2018 ◽  
Vol 58 (11) ◽  
pp. 2133-2141 ◽  
Author(s):  
Ying Qin ◽  
Er-Feng Du ◽  
Yong-Wei Li ◽  
Jing-Chen Zhang
2020 ◽  
Vol 205 ◽  
pp. 110097 ◽  
Author(s):  
Hong-Song Hu ◽  
Peng-Peng Fang ◽  
Yang Liu ◽  
Zi-Xiong Guo ◽  
Bahram M. Shahrooz

2020 ◽  
Vol 23 (10) ◽  
pp. 2204-2219
Author(s):  
Jun Wan ◽  
Jian Cai ◽  
Yue-Ling Long ◽  
Qing-Jun Chen

Based on the energy method, this article presents a theoretical study on the elastic local buckling of steel plates in rectangular concrete-filled steel tubular columns with binding bars subjected to eccentric compression. The formulas for elastic local buckling strength of the steel plates in eccentrically loaded rectangular concrete-filled steel tubular columns with binding bars are derived, assuming that the loaded edges are clamped and the unloaded edges of the steel plate are elastically restrained against rotation. Then, the experimental results are compared with these formulas, which exhibits good agreement. Subsequently, the formulas are used to study the elastic local buckling behavior of steel plates in rectangular concrete-filled steel tubular columns with binding bars under eccentric compression. It is found that the local buckling stress of steel plates in eccentrically loaded rectangular concrete-filled steel tubular columns with binding bars is significantly influenced by the stress gradient coefficient, width-to-thickness ratio, and the longitudinal spacing of binding bars. With the decrease of width–thickness ratios or the longitudinal spacing of binding bars or with the increase of the stress gradient coefficient, the local buckling stress increases. Furthermore, the influence of the longitudinal spacing of binding bar is more significant than the stress gradient coefficients. Finally, appropriate limitation for depth-to-thickness ratios ( D/ t), width-to-thickness ratios ( B/ t), and binding bar longitudinal spacing at various stress gradient coefficients ( α0) corresponding to different cross-sectional aspect ratios ( D/ B) are suggested for the design of rectangular concrete-filled steel tubular columns with binding bars under eccentric compression.


2012 ◽  
Vol 18 (9) ◽  
pp. 1429-1435
Author(s):  
Viet Duc Dang ◽  
Yoshiaki Okui ◽  
Koichi Hagiwara ◽  
Masatsugu Nagai

2016 ◽  
Vol 2 (8) ◽  
pp. 389-397
Author(s):  
Vahid Abdolvahab

With advances in technology in recent years, the use of orthotropic materials to exclude the mechanical deficiencies of homogeneous plates has increased. Sinusoidal corrugated plates are known as orthotropic plates, as a result of changes in their mechanical properties in two orthogonal directions. Since use of corrugated plates, in particular steel shear walls instead of flat steel plates, has increased, the present study investigated local buckling of sinusoidal corrugated plates under uniform uniaxial loading on the transverse edges of the plate (vertical loading on the sinusoidal wave of corrugated plates), using the Galerkin method. This method is very powerful with regard to solving differential equations, and directly uses these equations in the process of problem-solving. Finally, the results obtained for the critical buckling load of sinusoidal corrugated metal plates and the results relating to the metal homogeneous flat plates were compared using the same supporting conditions and loading.


2022 ◽  
Vol 171 ◽  
pp. 108756
Author(s):  
Yue-Ling Long ◽  
Lin Zeng ◽  
Leroy Gardner ◽  
M. Ahmer Wadee

2013 ◽  
Vol 838-841 ◽  
pp. 439-443 ◽  
Author(s):  
Zhi Liang Zuo ◽  
Da Xin Liu ◽  
Jian Cai ◽  
Chun Yang ◽  
Qing Jun Chen

To improve the mechanical behavior of T-shaped concrete-filled steel tubular (T-CFT) column, the method that setting binding bars along the height of steel tube is proposed. Five T-CFT stub columns with binding bars and another two without binding bars subjected to axial compression were tested. The influences of the spacing and diameter of binding bars on the failure modes, maximum strength, and ductility of T-CFT stub columns are investigated. The experimental results demonstrate that by setting binding bars or decreasing the spacing of binding bars, the buckling modes of the steel plates are changed, the local buckling of the steel plates is postponed, and the confinement effects on the core concrete can be improved significantly. By setting binding bars, the bearing capacity and ductility of the columns are enhanced by 1.17 and 3.38 times at most, respectively. By increasing the diameter of binding bars, the ductility of the columns is improved, but the bearing capacity and buckling strength cannot be improved when the diameter is large enough.


2007 ◽  
Vol 353-358 ◽  
pp. 3039-3042
Author(s):  
Hong Wei Ma ◽  
Chong Du Cho

Superelastic shape memory alloys (SMAs) can experience large strains up to 8~10% and restore residual strains just by removing the stress. By employing this unique characteristic of SMAs, a new beam-to-column connection is presented in this paper. The proposed SMA connection consists of an extended end-plate, eight long shank Nitinol SMA bolts, beam flange ribs, beam web stiffeners and continuity steel plates for reinforcing column flanges. In order to predict the behavior of SMA connection, 3-D solid finite element models are set up in ANSYS. The numerical results indicate that the local buckling of beam is avoided and a plastic hinge forms at beam-to-column interface when the moment-carrying capacity of bolt cluster is below the elastic flexural capacity of connecting beam. The SMA connection shows stable moment-rotation hysteresis curves with re-centering capability, which demonstrates the connection’s self-healing deformations function. Far different from energy dissipated by steel yield in traditional connection, the SMA connection shows moderate energy dissipation capacity, and this amount of energy is mainly dissipated by the superelastic behavior of SMA bolts. Moreover, the connection model shows a large inelastic rotation capacity beyond 0.03 rad. The ductility of SMA connection is deeply influenced by the length of SMA bolts, and the 2.2 times length of normal bolt is suggested for SMA bolts.


2020 ◽  
Vol 148 ◽  
pp. 106570 ◽  
Author(s):  
Zhe Xing ◽  
Merih Kucukler ◽  
Leroy Gardner

Sign in / Sign up

Export Citation Format

Share Document