scholarly journals Thermochemical Properties of Copper-Iron-Sulfur Alloy as Reference Metallic Phase for Analyzing Resulfurization

2021 ◽  
Vol 61 (12) ◽  
pp. 2929-2936
Author(s):  
Naoya Matsushita ◽  
Kosuke Awaya ◽  
Keijiro Saito ◽  
Masakatsu Hasegawa
Author(s):  
C. Hayzelden ◽  
J. L. Batstone

Epitaxial reordering of amorphous Si(a-Si) on an underlying single-crystal substrate occurs well below the melt temperature by the process of solid phase epitaxial growth (SPEG). Growth of crystalline Si(c-Si) is known to be enhanced by the presence of small amounts of a metallic phase, presumably due to an interaction of the free electrons of the metal with the covalent Si bonds near the growing interface. Ion implantation of Ni was shown to lower the crystallization temperature of an a-Si thin film by approximately 200°C. Using in situ transmission electron microscopy (TEM), precipitates of NiSi2 formed within the a-Si film during annealing, were observed to migrate, leaving a trail of epitaxial c-Si. High resolution TEM revealed an epitaxial NiSi2/Si(l11) interface which was Type A. We discuss here the enhanced nucleation of c-Si and subsequent silicide-mediated SPEG of Ni-implanted a-Si.Thin films of a-Si, 950 Å thick, were deposited onto Si(100) wafers capped with 1000Å of a-SiO2. Ion implantation produced sharply peaked Ni concentrations of 4×l020 and 2×l021 ions cm−3, in the center of the films.


1991 ◽  
Vol 1 (10) ◽  
pp. 1365-1370 ◽  
Author(s):  
N. D. Kush ◽  
V. N. Laukhin ◽  
A. I. Schegolev ◽  
E. B. Yagubskii ◽  
E. Yu. Alikberova ◽  
...  

1976 ◽  
Vol 37 (C4) ◽  
pp. C4-267-C4-270 ◽  
Author(s):  
B. BATLOGG ◽  
A. SCHLEGEL ◽  
P. WACHTER

2020 ◽  
Author(s):  
Nayyereh hatefi ◽  
William Smith

<div>Ideal{gas thermochemical properties (enthalpy, entropy, Gibbs energy, and heat capacity, Cp) of 49 alkanolamines potentially suitable for CO2 capture applications and their carbamate and protonated forms were calculated using two high{order electronic structure methods, G4 and G3B3 (or G3//B3LYP). We also calculate for comparison results from the commonly used B3LYP/aug-cc-pVTZ method. This data is useful for the construction of molecular{based thermodynamic models of CO2 capture processes involving these species. The Cp data for each species over the temperature range 200 K{1500 K is presented as functions of temperature in the form of NASA seven-term polynomial expressions, permitting the set of thermochemical properties to be calculated over this temperature range. The accuracy of the G3B3 and G4 results is estimated to be 1 kcal/mol and the B3LYP/aug-cc-pVTZ results are of nferior quality..</div>


Sign in / Sign up

Export Citation Format

Share Document