Metallic phase stabilization and phase diagram of (ET)3(HSO4)2

1991 ◽  
Vol 1 (10) ◽  
pp. 1365-1370 ◽  
Author(s):  
N. D. Kush ◽  
V. N. Laukhin ◽  
A. I. Schegolev ◽  
E. B. Yagubskii ◽  
E. Yu. Alikberova ◽  
...  
2010 ◽  
Vol 24 (32) ◽  
pp. 6307-6322 ◽  
Author(s):  
HANQIN DING ◽  
YANSHEN WANG

By using the bosonization approach and the renormalization group (RG) technique, we study the half-filled band one-dimensional t–U–J model with additional on-bond repulsion (W>0) in the weak-coupling regime. The presence of on-bond repulsion is responsible for realization of a metallic phase in the system, and the phase diagram is strongly controlled by the symmetry of the model. By analyzing the RG flow diagram and comparing order parameters, the phase boundaries are determined and the structure of the phase diagram is clarified. In the case of SU (2) ⊗ SU (2) symmetry, the phase diagram consists of a metallic phase characterized by a Luttinger liquid (LL) and two insulting phases characterized by the degenerate spin-density-wave (SDW) and the bond-charge-density-wave (BCDW). In the SU (2) ⊗ U(1)-symmetric case, the phase diagram contains two metallic phases: a LL and a Luther–Emery phase, and three insulating phases: the transverse SDW ( SDW ±), the longitudinal SDW ( SDW z) and the dimerized BCDW. The insulating charge-density-wave and bond-spin-density-wave (BSDW) phases are always suppressed in the ground state. In addition, the system show a long-ranged order in the BCDW and SDW z phases.


2014 ◽  
Vol 104 (10) ◽  
pp. 101913 ◽  
Author(s):  
Keith H. Warnick ◽  
Bin Wang ◽  
Sokrates T. Pantelides

Author(s):  
Detlef Klimm ◽  
Bartosz Szczefanowicz ◽  
Nora Wolff ◽  
Matthias Bickermann

AbstractBy differential thermal analysis, a concentration field suitable for the growth of Zr, Mg co-doped strontium hexagallate crystals was observed that corresponds well with known experimental results. It was shown that the melting point of doped crystal is ca. 60 K higher than that of undoped crystals. This higher melting points indicate hexagallate phase stabilization by Zr, Mg co-doping and increase the growth window of (Mg,Zr):SrGa12O19, compared to undoped SrGa12O19 that grows from SrO–Ga2O3 melts.


1977 ◽  
Vol 32 (10) ◽  
pp. 1125-1132 ◽  
Author(s):  
Jürgen Pebler ◽  
Klaus Schmidt

V1-xFexO2-xFx samples (0 ≤ x ≦ 0.20) have been prepared by solid state reaction in sealed platinum tubes. The temperature-composition phase diagram with 0 < x ≦ 0.04 is found to contain four phases which were determined by X-ray diffraction and 57Fe-Mössbauer measurements. At small (Fe3+, F-) concentrations (x < 0.005) only one Fe-site is seen in the low-temperature M1 phase and one transition from the insulator to metallic phase. For 0.005 ≦ x ≦ 0.008 at temperatures just below the metal-insulator transition a second monoclinic phase M2 is stable in which two Fe-sites are resolved by their electric field gradients and their isomer shifts. These two sites are identified as the Fe atoms on the paired V-V chains and the equispaced V-V chains in the C2/m structure of MAREZIO et al. At higher Fe3+, F- concentrations (x > 0.008) the existence of the intermediate phases M2 and M3, between M1 and the rutile phase, has been confirmed.


1995 ◽  
Vol 09 (04n05) ◽  
pp. 495-533 ◽  
Author(s):  
THIERRY MARTIN ◽  
DANIEL LOSS

We consider a one-dimensional system consisting of electrons with short-ranged repulsive interactions and coupled to small-momentum transfer acoustic phonons. The interacting electrons are bosonized and described in terms of a Luttinger liquid which allows us to calculate exactly the one- and two-electron Green function. For non-interacting electrons, the coupling to phonons alone induces a singularity at the Fermi surface which is analogous to that encountered for electrons with an instantaneous attractive interaction. The exponents which determine the presence of singlet/triplet superconducting pairing fluctuations, and spin/charge density wave fluctuations are strongly affected by the presence of the Wentzel-Bardeen singularity, resulting in the favoring of superconducting fluctuations. For the Hubbard model the equivalent of a phase diagram is established, as a function of: the electron-phonon coupling, the electron filling factor, and the on-site repulsion between electrons. The Wentzel-Bardeen singularity can be reached for arbitrary values of the electron-phonon coupling constant by varying the filling factor. This provides an effective mechanism to push the system from the antiferromagnetic into the metallic phase, and finally into the superconducting phase as the electron filling factor is increased towards half-filling.


Author(s):  
C. Hayzelden ◽  
J. L. Batstone

Epitaxial reordering of amorphous Si(a-Si) on an underlying single-crystal substrate occurs well below the melt temperature by the process of solid phase epitaxial growth (SPEG). Growth of crystalline Si(c-Si) is known to be enhanced by the presence of small amounts of a metallic phase, presumably due to an interaction of the free electrons of the metal with the covalent Si bonds near the growing interface. Ion implantation of Ni was shown to lower the crystallization temperature of an a-Si thin film by approximately 200°C. Using in situ transmission electron microscopy (TEM), precipitates of NiSi2 formed within the a-Si film during annealing, were observed to migrate, leaving a trail of epitaxial c-Si. High resolution TEM revealed an epitaxial NiSi2/Si(l11) interface which was Type A. We discuss here the enhanced nucleation of c-Si and subsequent silicide-mediated SPEG of Ni-implanted a-Si.Thin films of a-Si, 950 Å thick, were deposited onto Si(100) wafers capped with 1000Å of a-SiO2. Ion implantation produced sharply peaked Ni concentrations of 4×l020 and 2×l021 ions cm−3, in the center of the films.


1993 ◽  
Vol 90 ◽  
pp. 249-254 ◽  
Author(s):  
C Wolverton ◽  
M Asta ◽  
S Ouannasser ◽  
H Dreyssé ◽  
D de Fontaine

Sign in / Sign up

Export Citation Format

Share Document