scholarly journals Behavior of Aluminum Nitride, Austenite Grain Size, and Its Coarsening Temperature in Low Alloy Steels

1973 ◽  
Vol 59 (3) ◽  
pp. 446-453 ◽  
Author(s):  
Shushi KINOSHITA ◽  
Takeshi UEDA ◽  
Akira SUZUKI
1999 ◽  
Vol 5 (S2) ◽  
pp. 238-239
Author(s):  
Yong-Jun Oh ◽  
Min-Chul Kim ◽  
Jun Hwa Hong

Bainitic low alloy steel has a complex microstructure exhibiting several types of boundaries. The boundaries in bainitic steel, although certain boundaries are absent with respect to the alloy composition and the manufacturing process, could be typically divided into 4 types; dislocation cell boundary, lath boundary, packet boundary, and prior austenite grain boundary, in increasing order of size. The size and distribution of the respective boundaries are an important factor which controls the mechanical properties of the steels, including brittle fracture. In the present research, the characteristics of the boundaries in the bainitic low alloy steels were investigated in view of misorientation between grains enclosed by the respective boundaries.The alloys investigated were Mn-Mo-Ni low alloy forging steels having chemical compositions shown in TABLE 1. Steel-A was manufactured by the Vacuum Carbon Deoxidation(VCD) process. For the finer prior austenite grain size, Steel-B was produced by the aluminium addition and the silicon killing process. Before EBSD analysis, the microstructures of the alloys were observed using SEM and TEM. EBSD measurements were obtained using a Link OPAL system(Oxford) linked to a JEOL JSM 6300 SEM operating at 15KeV with the sample tilted at 70°.


2005 ◽  
Vol 475-479 ◽  
pp. 3169-3172 ◽  
Author(s):  
Seok Jae Lee ◽  
Young Kook Lee

There are many empirical equations for predicting martensite start temperature (Ms) and the kinetics models of martensitic transformation of plain carbon and low alloy steels. The Ms temperature equations are only dependent upon the chemistry, while the martensite transformation kinetics models are based on the degree of undercooling below Ms temperature. However, the prior austenite grain size (AGS) is also expected to influence both Ms temperature and martensite transformation kinetics as it does in diffusive transformations. In this study, herefore, both Ms temperature and martensite transformation kinetics of a low alloy steel with different austenite grain sizes were investigated using a dilatometer. The new Ms equation and martensite transformation kinetics model including the AGS effect are proposed.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 324
Author(s):  
David San-Martin ◽  
Matthias Kuntz ◽  
Francisca G. Caballero ◽  
Carlos Garcia-Mateo

This investigation explores the influence of the austenitisation heat treatment and thus, of the prior austenite grain size (PAGS), on the kinetics of the bainitic transformation, using as A case study two high-carbon, high-silicon, bainitic steels isothermally transformed (TIso = 250, 300, 350 °C), after being austenised at different temperatures (γTγ = 925–1125 °C). A methodology, based on the three defining dilatometric parameters extracted from the derivative of the relative change in length, was proposed to analyse the transformation kinetics. These parameters are related to the time to start bainitic transformation, the time lapse for most of the transformation to take place and the transformation rate at the end of the transformation. The results show that increasing the PAGS up to 70 µm leads to an increase in the bainite nucleation rate, this effect being more pronounced for the lowest TIso. However, the overall transformation kinetics seems to be weakly affected by the applied heat treatment (γTγ and TIso). In one of the steels, PAGS > 70 µm (γTγ > 1050 °C), which weakly affects the progress of the transformation, except for TIso = 250 °C, for which the enhancement of the autocatalytic effect could be the reason behind an acceleration of the overall transformation.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1988
Author(s):  
Tibor Kvackaj ◽  
Jana Bidulská ◽  
Róbert Bidulský

This review paper concerns the development of the chemical compositions and controlled processes of rolling and cooling steels to increase their mechanical properties and reduce weight and production costs. The paper analyzes the basic differences among high-strength steel (HSS), advanced high-strength steel (AHSS) and ultra-high-strength steel (UHSS) depending on differences in their final microstructural components, chemical composition, alloying elements and strengthening contributions to determine strength and mechanical properties. HSS is characterized by a final single-phase structure with reduced perlite content, while AHSS has a final structure of two-phase to multiphase. UHSS is characterized by a single-phase or multiphase structure. The yield strength of the steels have the following value intervals: HSS, 180–550 MPa; AHSS, 260–900 MPa; UHSS, 600–960 MPa. In addition to strength properties, the ductility of these steel grades is also an important parameter. AHSS steel has the best ductility, followed by HSS and UHSS. Within the HSS steel group, high-strength low-alloy (HSLA) steel represents a special subgroup characterized by the use of microalloying elements for special strength and plastic properties. An important parameter determining the strength properties of these steels is the grain-size diameter of the final structure, which depends on the processing conditions of the previous austenitic structure. The influence of reheating temperatures (TReh) and the holding time at the reheating temperature (tReh) of C–Mn–Nb–V HSLA steel was investigated in detail. Mathematical equations describing changes in the diameter of austenite grain size (dγ), depending on reheating temperature and holding time, were derived by the authors. The coordinates of the point where normal grain growth turned abnormal was determined. These coordinates for testing steel are the reheating conditions TReh = 1060 °C, tReh = 1800 s at the diameter of austenite grain size dγ = 100 μm.


2021 ◽  
Vol 809 ◽  
pp. 140972
Author(s):  
Jin-Young Lee ◽  
Jin-Sung Hong ◽  
Seok-Hyeon Kang ◽  
Young-Kook Lee

Sign in / Sign up

Export Citation Format

Share Document