scholarly journals Reaction of Dross Formation in Continuous Galvanizing

1974 ◽  
Vol 60 (1) ◽  
pp. 96-103 ◽  
Author(s):  
Hiroshi YAMAGUCHI ◽  
Yoshihiro HISAMATSU
Keyword(s):  
Author(s):  
Miloš Madić ◽  
Mohamed H Gadallah ◽  
Dušan Petković

For an efficient use of laser cutting technology, it is of great importance to analyze the impact of process parameters on different performance indicators, such as cut quality criteria, productivity criteria, costs as well as environmental performance criteria (energy and resource efficiency). Having this in mind, this study presents the experimental results of CO2 laser fusion cutting of AISI 304 stainless steel using nitrogen, with the aim of developing a semi-empirical mathematical model for the estimation of process efficiency as an important indicator of the achievable energy transfer efficiency in the cutting process. The model was developed by relating the theoretical power needed to melt the volume per unit time and used laser power, where the change of kerf width was modeled using an empirical power model in terms of laser cutting parameters such as laser power, cutting speed, and focus position. The obtained results indicated the dominant effect of the focus position on the change in process efficiency, followed by the cutting speed and laser power. In addition, in order to maximize process efficiency and simultaneously ensure high cut quality without dross formation, a laser cutting optimization problem with constraints was formulated and solved. Also, a multi-objective optimization problem aimed at simultaneous optimization of process efficiency and material removal rate was formulated and solved, where the determined set of Pareto non-dominated solutions was analyzed by using the entropy method and multi-criteria decision analysis method, that is, the Technique for Order of Preference by Similarity to Ideal Solution. The optimization results revealed that in order to enhance process efficiency and material removal rate, while ensuring high cut quality without dross formation, focusing the laser beam deep into the bulk of material is needed with particular trade-offs between laser power and cutting speed levels at high pressure levels of nitrogen.


Coatings ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 199 ◽  
Author(s):  
Wangjun Peng ◽  
Guangxin Wu ◽  
Rui Lu ◽  
Quanyong Lian ◽  
Jieyu Zhang

: A comparative study of the corrosive resistance and dross formation of 55Al–Zn–1.6Si (wt%) (55AZS) and 23Al–Zn–0.3Si–xMg (wt%) (23AZS–xMg, x = 0, 1.5, 3) alloys are performed using immersion corrosion and dross formation test, respectively. The result of immersion corrosion testing shows that corrosive rate of the 23AZS alloy is lower than that of 55AZS alloy in the latter stage of immersion and 23AZS–1.5Mg alloy shows the optimal corrosive resistance compared to other alloys relatively. The result of dross formation test shows that the number of bottom dross particle formed in 23AZS–xMg (x = 0, 1.5, 3) alloy is less than that in 55AZS alloy. Moreover, the thermodynamic calculation is performed to reveal the solubility of Fe in the alloys, the result shows the solubility of Fe reduces as a decrease of Al content in the alloy, and the number of dross particle (Fe4Al13 and 6 (Al9Fe2Si2) phase) generated in 23AZS alloy is more than that in 55AZS alloy. In general, 23AZS–1.5Mg alloy has an advantage of less dross and a certain corrosion resistance and it is expected to be applied for the hot stamping process of coating.


Author(s):  
Qun Luo ◽  
Feng Jin ◽  
Qian Li ◽  
Jie-Yu Zhang ◽  
Kuo-Chih Chou

10.29007/xl1j ◽  
2018 ◽  
Author(s):  
Yogin Vekariya ◽  
Trushant Desai ◽  
Rakesh Barot ◽  
Balkrushna Sharma

Casting process deals with the metal in the molten state. When the molten metal is poured into the mold box, Smooth and turbulence less flow with appropriate velocity is need to be ensured. Type of flow while pouring the molten metal has significant influence on the end characteristics of casting. Inefficient metal flow can result in error beyond altering the desired characteristics of casting. Dross formation while pouring the metal has direct connection with the type of flow of molten metal. In short, one cannot neglect the flow of molten metal on other hand expecting sound casting formation. Gating characteristics directly deals with the type of flow expected while pouring. To provide desired flow is one of the functions of efficient gating system. But it is very difficult to consider the flow characteristics while actually designing the gating system. Computer technology has taken leap to aid foundry engineer in control of metal flow. Simulation soft-wares have been equipped with provision of flow analysis while designing the Gating system.


JOM ◽  
2020 ◽  
Vol 72 (10) ◽  
pp. 3383-3392
Author(s):  
Jan Steglich ◽  
Bernd Friedrich ◽  
Marcel Rosefort
Keyword(s):  

Author(s):  
Asonganyi Ateh Atayo ◽  
Mahmood Bashir ◽  
Muhammad Mustafizur Rahman ◽  
Rajeev Nair

Abstract Stainless steel 304 is one of the most commonly used steel types for corrosion resistance applications, but higher melting point is a limitation in industries from a manufacturing point of view. The non-conventional and subtractive manufacturing technique of laser cutting — a beam directed method, is suitable for these applications. A Gaussian laser beam is directed at the material that melts, burns, vaporizes, or is blown away by a jet of gas, leaving a fine edge with good surface finish. In this study, a numerical study was performed to study the multi-physical fluid processes of laser cutting. Towards this, modeling was performed using 1.2 mm thick austenitic stainless-steel coupons that was cut using a continuous width neodymium-doped yttrium aluminum garnet (CW Nd: YAG) laser. The results showed smoother surface cut, little dross formation, lower temperature rise in heat affected zones, and less finish time at a cutting speed of 8m/min, higher laser power above 1000 W, gas pressure of 11 bars, and focus distance of −1.0 mm. It was observed that an increase in laser power at a faster cutting speed led to an increase in kerf width, reduction in dross formation, lower temperature rises in heat affected zones and a reduced finish time. The simulation results were compared with published experimental data and found to be well within a maximum difference of 15%.


Author(s):  
S. Freti ◽  
J.-D. Bornand ◽  
K. Buxmann
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document