scholarly journals Mechanical Properties of Nb-containing Low-carbon Steels Produced by Direct Rolling

1988 ◽  
Vol 74 (12) ◽  
pp. 2323-2329 ◽  
Author(s):  
Masahiko ODA ◽  
Hiroshi KUBO ◽  
Osamu AKISUE ◽  
Kichi NAKAZAWA
2013 ◽  
Vol 651 ◽  
pp. 163-167
Author(s):  
Shu Rui Li ◽  
Xue Min Wang ◽  
Xin Lai He

The influence of Ti oxide on the toughness of heat affected zone for low carbon bainitic steels has been investigated. The optical microscope, SEM and TEM were used to analyze the composition, size and distribution of the inclusions, and the microstructure and mechanical properties after welding thermal simulation were also investigated. The effect of Ti oxide inclusion on the transformation of acicular ferrite has also been studied. The results show that after the melting with Ti dioxide technique the inclusion is complex, in the core is Ti oxides about 1-3 micron and around it is MnS. It has been found the acicular ferrite can nucleate at the inclusions and the Ti oxide inclusion will promote the nucleation of acicular ferrite, and the acicular ferrite will block the growth of bainite. Therefore by introducing the Ti oxide in the steels the microstructure of HAZ could be refined markedly therefore the toughness of HAZ can be improved evidently.


2015 ◽  
pp. 405-437

Abstract Steels with martensitic and tempered martensitic microstructures, though sometimes perceived as brittle, exhibit plasticity and ductile fracture behavior under certain conditions. This chapter describes the alloying and tempering conditions that produce a ductile form of martensite in low-carbon steels. It also discusses the effect of tempering temperature on the mechanical behavior and deformation properties of medium-carbon steels.


2011 ◽  
Vol 194-196 ◽  
pp. 144-149
Author(s):  
Ai Wen Zhang ◽  
Si Hai Jiao ◽  
Zheng Yi Jiang ◽  
Quan She Sun ◽  
Dong Bin Wei

The as-rolled and enamel fired microstructure and mechanical properties of two low carbon steels with different compositions were analysed in the paper. The results show that the grains do not coarsen in lab firing process, and could be refined after industrial enamel firing process. The strength can keep stable in the firing process and the impact energy could be enhanced greatly under the industrial enamel firing process. The surface decarburized layer was occurred as a result of chemical reaction among the carbon in steel and water, oxides in the enamel frit.


Sign in / Sign up

Export Citation Format

Share Document