scholarly journals TRANSFORMASI GEN SUCROSE PHOSPHATE SYNTHASE (SoSPS1) MENGGUNAKAN Agrobacterium tumefaciens UNTUK MENINGKATKAN SINTESIS SUKROSA PADA TANAMAN TEBU (Saccharum officinarum L.)

2007 ◽  
Vol 12 (2) ◽  
pp. 137-143
Author(s):  
Miswar Miswar ◽  
Bambang Sugiharto ◽  
Joedoro Soedarsono ◽  
Sukarti Moeljapawiro

Sucrose phosphate synthase (SPS EC 2.3.1.14) plays an important role in partition of assimilated carbon in most plants. SPS catalyses the penultimate reaction in the pathway of sucrose synthesis, in which sucrose-6-phosphate (Suc6P) is synthesized from UDPglucose (UDPG) and fructose-6-P (Fru6P). To increase the capacity of sugarcane in sucrose synthesis, spindle leaves of sugarcane cv R579 were transformed with cDNA SoSPS1 from sugarcane under the control of constitutive promoter (35S CaMV) that constructed in pBI 121 (pKYS) using Agrobacterium tumefaciens. Based on PCR analysis, we have detected the existence of SPS transgene in some lines of transformed sugarcane, called line 4, 5, 6, and 7. The SPS transgene in transformed sugarcane could be expressed into translation level and increased the amount of leaves SPS protein, so the activity of leaves SPS was higher than wild type sugarcane as control. The transformed sugarcane line 4, 5, 6, and 7 showed 1.4–2.9 fold increases in SPS activity and 1,76–2,2 fold increases in leaves sucrose content. Increasing in SPS activity in transgenic sugarcane was coupled by the increase in invertase activity and ratio between sucrose and starch content.

2010 ◽  
Vol 37 (12) ◽  
pp. 1161 ◽  
Author(s):  
Luguang Wu ◽  
Robert G. Birch

Transgenic sugarcane (Saccharum officinarum L. interspecific hybrids) line N3.2 engineered to express a vacuole-targeted sucrose isomerase was found to accumulate sucrose to twice the level of the background genotype Q117 in heterotrophic cell cultures, without adverse effects on cell growth. Isomaltulose levels declined over successive subcultures, but the enhanced sucrose accumulation was stable. Detailed physiological characterisation revealed multiple processes altered in line N3.2 in a direction consistent with enhanced sucrose accumulation. Striking differences from the Q117 control included reduced extracellular invertase activity, slower extracellular sucrose depletion, lower activities of symplastic sucrose-cleavage enzymes (particularly sucrose synthase breakage activity), and enhanced levels of symplastic hexose-6-phosphate and trehalose-6-phosphate (T6P) in advance of enhanced sucrose accumulation. Sucrose biosynthesis by sucrose phosphate synthase (SPS) and sucrose phosphate phosphatase (SPP) was substantially faster in assays conducted to reflect the elevation in key allosteric metabolite glucose-6-phosphate (G6P). Sucrose-non-fermenting-1-related protein kinase 1 (SnRK1, which typically activates sucrose synthase breakage activity while downregulating SPS in plants) was significantly lower in line N3.2 during the period of fastest sucrose accumulation. For the first time, T6P is also shown to be a negative regulator of SnRK1 activity from sugarcane sink cells, hinting at a control circuitry for parallel activation of key enzymes for enhanced sucrose accumulation in sugarcane.


The use of elasticity coefficients and flux-control coefficients in a quantitative treatment of control is discussed, with photosynthetic sucrose synthesis as an example. Experimental values for elasticities for the cytosolic fructose 1,6-bisphosphatase and sucrose phosphate synthase are derived from their in vitro properties, and from an analysis of the in vivo relation between fluxes and metabolite levels. An empirical factor α , describing the response of the fructose 2,6-bisphosphate regulator cycle to fructose 6-phosphate is described, and an expression is derived relating α to the elasticities of the enzymes involved in this regulator cycle. The in vivo values for elasticities and α are then used in a modified form of the connectivity theorem to estimate the flux control coefficients of the cytosolic fructose 1,6-bisphosphatase and sucrose phosphate synthase during rapid photosynthetic sucrose synthesis.


2004 ◽  
Vol 31 (7) ◽  
pp. 685 ◽  
Author(s):  
Stephen J. Trevanion ◽  
C. Kate Castleden ◽  
Christine H. Foyer ◽  
Robert T. Furbank ◽  
W. Paul Quick ◽  
...  

The regulation of sucrose-phosphate synthase (SPS, E.C. 2.4.1.14), a key enzyme of sucrose synthesis, was investigated in wheat (Triticum aestivum L.) leaves. Wheat SPS was activated in the light, with an increased affinity for its substrates and the activator glucose-6-phosphate, reduced sensitivity to inhibition by Pi, but no change in maximum catalytic activity. Based on these properties, assays to measure the total activity and activation state of the enzyme were established and validated using several different wheat cultivars, grown under different environmental conditions. As found in previous studies on other species, e.g. spinach, activation appeared to be linked to the prevailing rate of photosynthesis rather than light per se. Long-term exposure to higher light levels increased total SPS activity in the leaves, and some experiments indicated that this response could occur within 1 h of exposure of low-light-grown plants to high light. However, activation of pre-existing enzyme was a more common short-term response to high light. Wheat, like many important cereal species, stores a large amount of sucrose in its leaves. In contrast with spinach, which stores more starch in its leaves, accumulation of sucrose in wheat leaves did not lead to inactivation of SPS or inhibition of sucrose synthesis. In conclusion, the mechanisms linking the rates of sucrose synthesis and photosynthetic CO2 fixation in wheat leaves appear to be similar to those in other species, but the mechanisms involved in short-term feedback inhibition of sucrose synthesis by sucrose, found in starch-storing species, are lacking in wheat.


2019 ◽  
Vol 6 (1) ◽  
pp. 130
Author(s):  
Suwinda Fibriani ◽  
Inyana Dwi Agustien ◽  
Widhi Dyah Sawitri ◽  
Bambang Sugiharto

Genetic Transformation and Expression of Sucrose Phosphate Synthase Mutant in Tomato Plant ABSTRACTSucrose phosphate synthase (SPS) is a key enzyme responsible for sucrose biosynthesis. In its regulation, SPS activity is modulated by an allosteric effector glucose-6-phosphate (G6P) suggested to have an ability to bind SPS N-terminus domain. To understand the role of N-terminus in regulating SPS, the SPS gene was mutated with the deletion of N-terminus domain (∆N-SPS). The ∆N-SPS gen was transformed into tomato plants with 5% transformation efficiency. Three transgenic tomato plant 4.20, 5.5.1, and 5.10 were obtained and confirmed by PCR analysis. Transgenic tomato expression was characterized by enzymatic analysis. Result showed that the G6P allosteric regulation in transgenic ∆N-SPS had lost and the SPS activity increased by 2-fold compared to non-transgenic plant. This showed that N-terminus domain-deleted SPS could be actively expressed in plant. Keywords: enzyme, genetic transformation, N-terminus domain deletion, sucrose phosphate synthase, tomato ABSTRAKSucrose phosphate synthase (SPS) merupakan enzim kunci yang bertanggung jawab dalam sintesis sukrosa. Dalam regulasinya, aktifitas SPS dipengaruhi oleh alosterik efektor glukosa-6-fosfat (G6P) yang diduga dapat berikatan pada domain N-terminus SPS. Untuk mengetahui peran N-terminus pada regulasi SPS, dilakukan mutasi SPS dengan penghilangan domain N-terminus (∆N-SPS). Gen ∆N-SPS diinsersi pada tanaman tomat melalui transformasi genetik dengan efisiensi transformasi 5%. Tiga tanaman transgenik tomat (event4.20; 5.5.1; dan 5.10) didapatkan dan positif terkonfirmasi melalui analisis PCR. Ekspresi mutan dikarakterisasi melalui analisis enzimatik. Hasil menunjukkan bahwa tanaman tomat transgenik ∆N-SPS tidak dipengaruhi regulasi alosterik G6P dan aktifitas SPS 2 kali lipat lebih tinggi daripada tanaman bukan transgenik. Ini menunjukkan bahwa SPS dengan delesi domain N-terminus dapat terekspresi aktif pada tanaman.  Kata Kunci: delesi domain N-terminus, enzim, sucrose phosphate synthase, tomat, transformasi genetik 


2014 ◽  
Vol 80 (18) ◽  
pp. 5672-5679 ◽  
Author(s):  
Shigeki Ehira ◽  
Satoshi Kimura ◽  
Shogo Miyazaki ◽  
Masayuki Ohmori

ABSTRACTThe filamentous, nitrogen-fixing cyanobacteriumAnabaenasp. strain PCC 7120 accumulates sucrose as a compatible solute against salt stress. Sucrose-phosphate synthase activity, which is responsible for the sucrose synthesis, is increased by salt stress, but the mechanism underlying the regulation of sucrose synthesis remains unknown. In the present study, a response regulator, OrrA, was shown to control sucrose synthesis. Expression ofspsA, which encodes a sucrose-phosphate synthase, andsusAandsusB, which encode sucrose synthases, was induced by salt stress. In theorrAdisruptant, salt induction of these genes was completely abolished. The cellular sucrose level of theorrAdisruptant was reduced to 40% of that in the wild type under salt stress conditions. Moreover, overexpression oforrAresulted in enhanced expression ofspsA,susA, andsusB, followed by accumulation of sucrose, without the addition of NaCl. We also found that SigB2, a group 2 sigma factor of RNA polymerase, regulated the early response to salt stress under the control of OrrA. It is concluded that OrrA controls sucrose synthesis in collaboration with SigB2.


2010 ◽  
Vol 135 (6) ◽  
pp. 501-505 ◽  
Author(s):  
Jun Matsumoto ◽  
Hideyuki Goto ◽  
Yasutaka Kano ◽  
Akira Kikuchi ◽  
Hideaki Ueda ◽  
...  

To determine the relationship among cell size, acid invertase (AI) activity, sucrose phosphate synthase (SPS) activity, and sucrose accumulation in melon (Cucumis melo L.) during early development [from 6 to 16 days after anthesis (DAA)], fruit were heated at night to a minimum of 20 °C. Cells of heated fruit were larger than those of control fruit at 16 DAA but smaller at 50 DAA. AI activity was lower and SPS activity was higher in heated than in control fruit up to 26 DAA. Sucrose, glucose, and fructose contents at 26 and 50 DAA were higher in heated than in control fruit. Heating caused cells to reach mature size earlier than those of control fruit, and maturity was accompanied by earlier decline in AI activity and an earlier increase in SPS activity that promoted soluble sugar accumulation.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Panpan Ma ◽  
Xingtan Zhang ◽  
Lanping Chen ◽  
Qian Zhao ◽  
Qing Zhang ◽  
...  

Abstract Background Sucrose phosphate synthase (SPS) genes play vital roles in sucrose production across various plant species. Modern sugarcane cultivar is derived from the hybridization between the high sugar content species Saccharum officinarum and the high stress tolerance species Saccharum spontaneum, generating one of the most complex genomes among all crops. The genomics of sugarcane SPS remains under-studied despite its profound impact on sugar yield. Results In the present study, 8 and 6 gene sequences for SPS were identified from the BAC libraries of S. officinarum and S. spontaneum, respectively. Phylogenetic analysis showed that SPSD was newly evolved in the lineage of Poaceae species with recently duplicated genes emerging from the SPSA clade. Molecular evolution analysis based on Ka/Ks ratios suggested that polyploidy reduced the selection pressure of SPS genes in Saccharum species. To explore the potential gene functions, the SPS expression patterns were analyzed based on RNA-seq and proteome dataset, and the sugar content was detected using metabolomics analysis. All the SPS members presented the trend of increasing expression in the sink-source transition along the developmental gradient of leaves, suggesting that the SPSs are involved in the photosynthesis in both Saccharum species as their function in dicots. Moreover, SPSs showed the higher expression in S. spontaneum and presented expressional preference between stem (SPSA) and leaf (SPSB) tissue, speculating they might be involved in the differentia of carbohydrate metabolism in these two Saccharum species, which required further verification from experiments. Conclusions SPSA and SPSB genes presented relatively high expression and differential expression patterns between the two Saccharum species, indicating these two SPSs are important in the formation of regulatory networks and sucrose traits in the two Saccharum species. SPSB was suggested to be a major contributor to the sugar accumulation because it presented the highest expressional level and its expression positively correlated with sugar content. The recently duplicated SPSD2 presented divergent expression levels between the two Saccharum species and the relative protein content levels were highest in stem, supporting the neofunctionalization of the SPSD subfamily in Saccharum.


Sign in / Sign up

Export Citation Format

Share Document