A Position Estimation Algorithm for Vehicle Following

Author(s):  
Kuor-Hsin Chang ◽  
Costas N. Georghiades
Author(s):  
Sirish Kumar Pagoti ◽  
Bala Sai Srilatha Indira Dutt Vemuri ◽  
Ganesh Laveti

If any Global Positioning System (GPS) receiver is operated in low latitude regions or urban canyons, the visibility further reduces. These system constraints lead to many challenges in providing precise GPS position accuracy over the Indian subcontinent. As a result, the standalone GPS accuracy does not meet the aircraft landing requirements, such as Category I (CAT-I) Precision Approaches. However, the required accuracy can be achieved by augmenting the GPS. Among all these issues, the predominant factors that significantly influence the receiver position accuracy are selecting a user/receiver position estimation algorithm. In this article, a novel method is proposed based on correntropy and designated as Correntropy Kalman Filter (CKF) for precise GPS applications and GPS Aided Geosynchronous equatorial orbit Augmented Navigation (GAGAN) based aircraft landings over the low latitude Indian subcontinent. The real-world GPS data collected from a dual-frequency GPS receiver located in the southern region of the Indian subcontinent (IISc), Bangalore with Lat/Long: 13.021°N/ 77.5°E) is used for the performance evaluation of the proposed algorithm. Results prove that the proposed CKF algorithm exhibits significant improvement (up to 34%) in position estimation compared to the traditional Kalman Filter.


2014 ◽  
Vol 43 (6) ◽  
pp. 612001
Author(s):  
邢强 XING Qiang ◽  
戴振东 DAI Zhendong ◽  
王浩 WANG Hao

Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 276 ◽  
Author(s):  
Hongfen Bai

To improve the operating performance of electric propulsion ships, the permanent magnet synchronous motor is commonly used as the propulsion motor. Additionally, position estimation without sensors can further improve the application range of the propulsion motor and the estimated results can represent the redundancy of measured values from mechanical sensors. In this paper, the high-frequency (HF) injection algorithm combined with the second-order generalized integrator (SOGI) is presented on the basis of analyzing the structure of the electric propulsion ship and the vector control of the motors. The position and rotor speed were estimated accurately by the approximate calculation of q-axis currents directly related to the rotor position. Moreover, the harmonics in the estimated position were effectively reduced by the introduction of the second-order generalized integrator. Then, the rotor position estimation algorithm was verified in MATLAB/Simulink by choosing different low speeds including speed reversal, increasing speed, and increasing load torque. Finally, the correctness of the proposed improved high-frequency injection algorithm based on the second-order generalized integrator was verified by the experimental propulsion permanent magnet synchronous motor (PMSM) system at low speed.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Kyu-Won Kim ◽  
Jun-Hyuck Im ◽  
Moon-Beom Heo ◽  
Gyu-In Jee

Road markings are always present on roads to guide and control traffic. Therefore, they can be used at any time for vehicle localization. Moreover, they can be easily extracted by using light detection and ranging (LIDAR) intensity because they are brightly colored. We propose a vehicle localization method using a 2D road marking grid map. The grid map inserts the map information into the grid directly. Thus, an additional process (such as line detection) is not required and there is no problem due to false detection. We obtained road marking using a 3D LIDAR (Velodyne HDL-32E) and binarized this information to store in the map. Thus, we could reduce the map size significantly. In the previous research, the road marking grid map was used only for position estimation. However, we propose a position-and-heading estimation algorithm using the binary road marking grid map. Accordingly, we derive more precise position estimation results. Moreover, position reliability is an important factor for vehicle localization. Autonomous vehicles may cause accidents if they cannot maintain their lane momentarily. Therefore, we propose an algorithm for evaluating map matching results. Consequently, we can use only reliable matching results and increase position reliability. The experiment was conducted in Gangnam, Seoul, where GPS error occurs largely. In the experimental results, the lateral root mean square (RMS) error was 0.05 m and longitudinal RMS error was 0.08 m. Further, we obtained a position error of less than 50 cm in both lateral and longitudinal directions with a 99% confidence level.


Sign in / Sign up

Export Citation Format

Share Document