Stability Conditions and Controller Design for Systems with Sensor and Actuator Failures

Author(s):  
Tung-Fu Hsieh ◽  
Ching-An Lin
2014 ◽  
Vol 118 (1207) ◽  
pp. 1009-1038 ◽  
Author(s):  
S. Ismail ◽  
A. A. Pashilkar ◽  
R. Ayyagari ◽  
N. Sundararajan

Abstract A novel formulation of the flight dynamic equations is presented that permits a rapid solution for the design of trajectory following autopilots for nonlinear aircraft dynamic models. A robust autopilot control structure is developed based on the combination of the good features of the nonlinear dynamic inversion (NDI) method, integrator backstepping method, time scale separation and control allocation methods. The aircraft equations of motion are formulated in suitable variables so that the matrices involved in the block backstepping control design method are diagonally dominant. This allows us to use a linear controller structure for a trajectory following autopilot for the nonlinear aircraft model using the well known loop by loop controller design approach. The resulting autopilot for the fixed-wing rigid-body aircraft with a cascaded structure is referred to as the diagonally dominant backstepping (DDBS) controller. The method is illustrated here for an aircraft auto-landing problem under unknown actuator failures and severe winds. The requirement of state and control surface limiting is also addressed in the context of the design of the DDBS controller.


2011 ◽  
Vol 110-116 ◽  
pp. 4381-4388
Author(s):  
Amezquita S. Kendrick ◽  
Lin Yan ◽  
Waseem Aslam Butt

An adaptive dynamic surface control scheme for actuator failures compensation in a class of nonlinear system is presented. Radial basis function neural networks (RBF NNs) are incorporated into our controller design, for approximating the nonlinearities around the known nominal model. The RBF NNs compensate the system dynamics uncertainties and disturbance induced by actuator failures. The closed-loop signals of the system are proven to be uniformly ultimately bounded (UUB) by Lyapunov analysis. The output tracking error is bounded within a residual set which can be made small by appropriately choosing the controller parameters. We show the effectiveness of our approach by simulating the longitudinal dynamics of a twin otter aircraft with half portion of the elevator failing at unknown value and time instant.


Author(s):  
Lifeng Ma ◽  
Zidong Wang ◽  
Yuming Bo ◽  
Zhi Guo

This paper is concerned with the variance-constrained controller design problem for a class of uncertain nonlinear stochastic systems with possible actuator faults. The stochastic nonlinearities described by statistical means are quite general that include several well-studied classes of nonlinearities as special cases. A model of actuator failures is adopted, which is more practical than the traditional outage one. A linear matrix inequality (LMI) approach is proposed to solve the multiobjective fault-tolerant controller design problem, where both the exponential stability and the steady-state state variance indices are simultaneously guaranteed. Within the developed LMI framework, a sufficient condition for the solvability of the robust control problem is obtained. The explicit expression of the desired controllers is also parameterized and a single degree-of-freedom model is used to demonstrate the effectiveness and applicability of the proposed design approach.


2017 ◽  
Vol 68 (5) ◽  
pp. 349-356
Author(s):  
Vojtech Veselý

Abstract A unique approach to the design of gain scheduled controller (GSC) is presented. The proposed design procedure is based on the Bellman-Lyapunov equation, guaranteed cost and robust stability conditions using the parameter dependent quadratic stability approach. The obtained feasible design procedures for robust GSC design are in the form of BMI with guaranteed convex stability conditions. The obtained design results and their properties are illustrated in the simultaneously design of controllers for simple model (6-order) turbogenerator. The results of the obtained design procedure are a PI automatic voltage regulator (AVR) for synchronous generator, a PI governor controller and a power system stabilizer for excitation system.


2013 ◽  
Vol 2013 ◽  
pp. 1-11
Author(s):  
Wei Guan

In this paper, an indirect adaptive fault-tolerantH∞controller design method is proposed for networked systems in the presence of actuator saturation. Based on the on-line estimation of eventual faults, the parameters of controller are being updated automatically to compensate the fault effects on systems. The designs are given in linear matrix inequalities (LMIs) approach, which can guarantee the disturbance tolerance level and adaptiveH∞performances of networked systems in the cases of actuator saturation and actuator failures. An example is given to illustrate the efficiency of the design method.


Sign in / Sign up

Export Citation Format

Share Document