scholarly journals Adaptive Fault-TolerantH∞Controller Design for Networked Systems with Actuator Saturation

2013 ◽  
Vol 2013 ◽  
pp. 1-11
Author(s):  
Wei Guan

In this paper, an indirect adaptive fault-tolerantH∞controller design method is proposed for networked systems in the presence of actuator saturation. Based on the on-line estimation of eventual faults, the parameters of controller are being updated automatically to compensate the fault effects on systems. The designs are given in linear matrix inequalities (LMIs) approach, which can guarantee the disturbance tolerance level and adaptiveH∞performances of networked systems in the cases of actuator saturation and actuator failures. An example is given to illustrate the efficiency of the design method.

2011 ◽  
Vol 480-481 ◽  
pp. 1352-1357
Author(s):  
Nan Xie ◽  
Bin Xia

This paper is concerned with the problem of state-feedback guaranteed cost controller design for uncertain networked systems with both network-induces delay and data dropout taken into consideration. The sufficient condition for the existence of the networked guaranteed quadratic cost controller is obtained in terms of matrix inequalities, and the controller design method is deduced in terms of linear matrix inequalities. Furthermore, the suboptimal networked guaranteed cost controller design method is obtained with cone complementarity linearization algorithm. A numerical example is given to illustrate the proposed method.


Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 375
Author(s):  
Hejun Yao

The problem of anti-saturation control for a class of time-delay systems with actuator saturation is considered in this paper. By introducing appropriate variable substitution, a new delay time-delay systems model with actuator saturation systems is established. Based on the Lyapunov stability theory, the stability condition and the anti-saturation controller design method are obtained by using the linear matrix inequality approach. By introducing the matrix into the Lyapunov function, the proposed conditions are less conservative than the previous results. Finally, a simulation example shows the validity and rationality of the method.


2014 ◽  
Vol 912-914 ◽  
pp. 1065-1068
Author(s):  
Li Ming Zhu ◽  
Zong Da Zhu ◽  
Yong Gang Yan

T For the networked control system (NCS), the considered system has actuator and sensor failures. In considering the impact of the network delay on system performance, establish a new class of uncertain NCS fault model Then use Lyapunov stability theory, fault-tolerant control theory and the static state feedback, the sufficient conditions for closed-loop NCS possessing robust asymptotically stable against actuator and sensor failure are given . And the robust H-inf fault-tolerant controller design method under the sensor and actuator failures is deduced in terms of linear matrix inequalities (LMI). An numerical simulation is provided to show the effectiveness of the proposed conclusion.


2017 ◽  
Vol 40 (10) ◽  
pp. 2982-2990 ◽  
Author(s):  
Mahmood Khatibi ◽  
Mohammad Haeri

This paper presents a novel fault-tolerant control strategy to compensate the time-varying loss of actuators’ effectiveness. It considers intermediate situations where the fault is not determined precisely (unlike active approaches) but overall estimations about its rate and final value are available through the previous experiences and/or experiments. Based on the estimations, two upper and lower time-varying bounds on the actuators’ effectiveness are established to be exploited in the procedure of controller design. In a special case, where these bounds are constant, the method will be reduced to the conventional passive approach. Also, actuator saturation and the effects of [Formula: see text] disturbances are considered in the research. To tackle the conflict between attenuating the effect of L∞ disturbances and enlarging the domain of attraction, a linear matrix inequality optimization framework is suggested. The proposed method is implemented on a model of an unmanned aerial vehicle and the results are discussed.


Author(s):  
Lifeng Ma ◽  
Zidong Wang ◽  
Yuming Bo ◽  
Zhi Guo

This paper is concerned with the variance-constrained controller design problem for a class of uncertain nonlinear stochastic systems with possible actuator faults. The stochastic nonlinearities described by statistical means are quite general that include several well-studied classes of nonlinearities as special cases. A model of actuator failures is adopted, which is more practical than the traditional outage one. A linear matrix inequality (LMI) approach is proposed to solve the multiobjective fault-tolerant controller design problem, where both the exponential stability and the steady-state state variance indices are simultaneously guaranteed. Within the developed LMI framework, a sufficient condition for the solvability of the robust control problem is obtained. The explicit expression of the desired controllers is also parameterized and a single degree-of-freedom model is used to demonstrate the effectiveness and applicability of the proposed design approach.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Rui Wang ◽  
Lei Gao ◽  
Chengrui Bai ◽  
Hui Sun

This paper proposes a U-model-based fault-tolerant controller design method in order to ensure the unmanned aerial vehicle (UAV) flight performance when subject to the actuator failures. Depending on the decoupled quadrotor model, this paper presents a sliding mode control method based on U-model in detail and realizes fault-tolerant control for the quadrotor UAV with the stability theory and simulation experiment verifications. The results show that the new controller designed by using the U-model method can simplify the controller design process which has good fault-tolerant characteristics when actuator faults occur compared with the traditional method.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Hossein Tohidi ◽  
Koksal Erenturk

This paper deals with the problem of induction motor tracking control against actuator faults and external disturbances using the linear matrix inequalities (LMIs) method and the adaptive method. A direct adaptive fault-tolerant tracking controller design method is developed based on Lyapunov stability theory and a constructive algorithm based on linear matrix inequalities for online tuning of adaptive and state feedback gains to stabilize the closed-loop system in order to reduce the fault effect with disturbance attenuation. Simulation results reveal the merits of proposed robust adaptive fault-tolerant tracking control scheme on an induction motor subjected to actuator faults.


Mathematics ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 1169
Author(s):  
Zhezhe Xin ◽  
Chunjie Xiao ◽  
Ting Hou ◽  
Xiao Shen

Robust stabilization and H ∞ controller design for uncertain systems with impulsive and stochastic effects have been deeply discussed. Some sufficient conditions for the considered system to be robustly stable are derived in terms of linear matrix inequalities (LMIs). In addition, an example with simulations is given to better demonstrate the usefulness of the proposed H ∞ controller design method.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 823
Author(s):  
Wen-Jer Chang ◽  
Yu-Wei Lin ◽  
Yann-Horng Lin ◽  
Chin-Lin Pen ◽  
Ming-Hsuan Tsai

In many practical systems, stochastic behaviors usually occur and need to be considered in the controller design. To ensure the system performance under the effect of stochastic behaviors, the controller may become bigger even beyond the capacity of practical applications. Therefore, the actuator saturation problem also must be considered in the controller design. The type-2 Takagi-Sugeno (T-S) fuzzy model can describe the parameter uncertainties more completely than the type-1 T-S fuzzy model for a class of nonlinear systems. A fuzzy controller design method is proposed in this paper based on the Interval Type-2 (IT2) T-S fuzzy model for stochastic nonlinear systems subject to actuator saturation. The stability analysis and some corresponding sufficient conditions for the IT2 T-S fuzzy model are developed using Lyapunov theory. Via transferring the stability and control problem into Linear Matrix Inequality (LMI) problem, the proposed fuzzy control problem can be solved by the convex optimization algorithm. Finally, a nonlinear ship steering system is considered in the simulations to verify the feasibility and efficiency of the proposed fuzzy controller design method.


Sign in / Sign up

Export Citation Format

Share Document