Hierarchical Traffic Matrices: Axiomatic Foundations to Practical Traffic Matrix Synthesis

Author(s):  
Paul Tune ◽  
Matthew Roughan ◽  
Chris Wiren
2014 ◽  
Vol 42 (2) ◽  
pp. 43-45 ◽  
Author(s):  
Paul Tune ◽  
Matthew Roughan

2015 ◽  
Vol 45 (4) ◽  
pp. 579-592 ◽  
Author(s):  
Paul Tune ◽  
Matthew Roughan

2021 ◽  
Author(s):  
Grigorios Kakkavas ◽  
Michail Kalntis ◽  
Vasileios Karyotis ◽  
Symeon Papavassiliou

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Matthew Mannarino ◽  
Hosni Cherif ◽  
Li Li ◽  
Kai Sheng ◽  
Oded Rabau ◽  
...  

Abstract Background There is an increased level of senescent cells and toll-like teceptor-1, -2, -4, and -6 (TLR) expression in degenerating intervertebral discs (IVDs) from back pain patients. However, it is currently not known if the increase in expression of TLRs is related to the senescent cells or if it is a more general increase on all cells. It is also not known if TLR activation in IVD cells will induce cell senescence. Methods Cells from non-degenerate human IVD were obtained from spine donors and cells from degenerate IVDs came from patients undergoing surgery for low back pain. Gene expression of TLR-1,2,4,6, senescence and senescence-associated secretory phenotype (SASP) markers was evaluated by RT-qPCR in isolated cells. Matrix synthesis was verified with safranin-O staining and Dimethyl-Methylene Blue Assay (DMMB) confirmed proteoglycan content. Protein expression of p16INK4a, SASP factors, and TLR-2 was evaluated by immunocytochemistry (ICC) and/or by enzyme-linked immunosorbent assay (ELISA). Results An increase in senescent cells was found following 48-h induction with a TLR-2/6 agonist in cells from both non-degenerate and degenerating human IVDs. Higher levels of SASP factors, TLR-2 gene expression, and protein expression were found following 48-h induction with TLR-2/6 agonist. Treatment with o-vanillin reduced the number of senescent cells, and increased matrix synthesis in IVD cells from back pain patients. Treatment with o-vanillin after induction with TLR-2/6 agonist reduced gene and protein expression of SASP factors and TLR-2. Co-localized staining of p16INK4a and TLR-2 demonstrated that senescent cells have a high TLR-2 expression. Conclusions Taken together our data demonstrate that activation of TLR-2/6 induce senescence and increase TLR-2 and SASP expression in cells from non-degenerate IVDs of organ donors without degeneration and back pain and in cells from degenerating human IVD of patients with disc degeneration and back pain. The senescent cells showed high TLR-2 expression suggesting a link between TLR activation and cell senescence in human IVD cells. The reduction in senescence, SASP, and TLR-2 expression suggest o-vanillin as a potential disease-modifying drug for patients with disc degeneration and back pain.


Cartilage ◽  
2020 ◽  
pp. 194760352098015
Author(s):  
Mara H. O’Brien ◽  
Eliane H. Dutra ◽  
Shivam Mehta ◽  
Po-Jung Chen ◽  
Sumit Yadav

Objective Bone morphogenetic protein 2 (BMP2) plays important roles in cartilage growth and development. Paradoxically, elevated levels of BMP2 leads to hypertrophic differentiation and osteoarthritis of cartilage. We examined the in vivo loss of BMP2 in cells expressing aggrecan of the mandibular condyle and knee. Design Three-week-old BMP2 flox/flox- CreER-positive mice and their Cre-negative littermates were treated with tamoxifen and raised until 3 or 6 months. We also investigated the direct effects of BMP2 on chondrocytes in vitro. Cells from the mandibular condyle of mice were treated with recombinant human BMP2 (rhBMP2) or rhNoggin (inhibitor of BMP2 signaling). Results Conditional deletion of BMP2 caused breakage of the cartilage integrity in the mandibular condyle of mice from both age groups, accompanied by a decrease in cartilage thickness, matrix synthesis, mineralization, chondrocyte proliferation, and increased expression of degeneration markers, while the effects at articular cartilage were not significant. In vitro results revealed that rhBMP2 increased chondrocyte proliferation, mineralization, and differentiation, while noggin induced opposite effects. Conclusions In conclusion, BMP2 is essential for postnatal maintenance of the osteochondral tissues of the mandibular condyle.


Sign in / Sign up

Export Citation Format

Share Document