Simple ant colony algorithm for combinatorial optimization problems

Author(s):  
Zhaojun Zhang ◽  
Kuansheng Zou
2014 ◽  
Vol 678 ◽  
pp. 51-54
Author(s):  
Yan Rong Cui

It has obtained a better result to use ant colony algorithm to solve complex combinatorial optimization problems, but different value of the parameters in ant colony algorithm affects the performance of the algorithm. This paper studies the configuration of parameters in ant colony algorithm, and analyses the impact of the key parameters of the algorithm, and obtains the optimal parameter combination of using ant colony algorithm to solve TSP problems by using EIL51TSP data to simulate.


2013 ◽  
Vol 443 ◽  
pp. 541-545
Author(s):  
Qian Zou ◽  
Hua Jun Wang ◽  
Wei Huang ◽  
Jin Pan

Ant colony algorithm is an effective algorithm to solve combinatorial optimization problems, it has many good features, and there are also some disadvantages. In this paper, through research on ant colony optimization algorithm, apply it in intrusion detection. Then it gives an improved ant colony optimization algorithm. Tests show that the algorithm improves the efficiency of intrusion detection, reduces false positives of intrusion detection.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Tao Cong ◽  
Lin Jiang ◽  
Qihang Sun ◽  
Yang Li

With the rapid development of big data, big data research in the security protection industry has been increasingly regarded as a hot spot. This article mainly aims at solving the problem of predicting the tendency of juvenile delinquency based on the experimental data of juvenile blindly following psychological crime. To solve this problem, this paper proposes a rough ant colony classification algorithm, referred to as RoughAC, which first uses the concept of upper and lower approximate sets in rough sets to determine the degree of membership. In addition, in the ant colony algorithm, we use the membership value to update the pheromone. Experiments show that the algorithm can not only solve the premature convergence problem caused by stagnation near the local optimal solution but also solve the continuous domain and combinatorial optimization problems and achieve better classification results. Moreover, the algorithm has a good effect on predicting classification and can provide guidance for predicting the tendency of juvenile delinquency.


Algorithms ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 286
Author(s):  
Ali Ahmid ◽  
Thien-My Dao ◽  
Ngan Van Le

Solving of combinatorial optimization problems is a common practice in real-life engineering applications. Trusses, cranes, and composite laminated structures are some good examples that fall under this category of optimization problems. Those examples have a common feature of discrete design domain that turn them into a set of NP-hard optimization problems. Determining the right optimization algorithm for such problems is a precious point that tends to impact the overall cost of the design process. Furthermore, reinforcing the performance of a prospective optimization algorithm reduces the design cost. In the current study, a comprehensive assessment criterion has been developed to assess the performance of meta-heuristic (MH) solutions in the domain of structural design. Thereafter, the proposed criterion was employed to compare five different variants of Ant Colony Optimization (ACO). It was done by using a well-known structural optimization problem of laminate Stacking Sequence Design (SSD). The initial results of the comparison study reveal that the Hyper-Cube Framework (HCF) ACO variant outperforms the others. Consequently, an investigation of further improvement led to introducing an enhanced version of HCFACO (or EHCFACO). Eventually, the performance assessment of the EHCFACO variant showed that the average practical reliability became more than twice that of the standard ACO, and the normalized price decreased more to hold at 28.92 instead of 51.17.


2011 ◽  
Vol 219-220 ◽  
pp. 1504-1508
Author(s):  
Ying Qu ◽  
Pang Zhou

This paper presents a new algorithm for approximate inference in credal networks (that is, models based on directed acyclic graphs and interval-valued probabilities). Approximate inference in credal networks can be considered as multistage decision in this paper. It is looked as combinatorial optimization problems that obtaining the extreme posteriors from the combinations of various vertices in credal networks. Based on this, the paper combines two intelligence swarm algorithms (ant colony algorithm and artificial fish swarm algorithm) to obtain interval posterior probabilities of query variable for the states of given evidence variables.


Author(s):  
J.F. WANG ◽  
J.H. LIU ◽  
S.Q. LI ◽  
Y.F. ZHONG

Selective disassembly is an important issue in industrial and mechanical engineering for environmentally conscious manufacturing. This paper presents an intelligent selective disassembly approach based on ant colony algorithms, which take inspiration from the behavior of real ant colonies and are used to solve combinatorial optimization problems. For diverse assemblies, the algorithm generates different amounts of ants cooperating to find disassembly sequences for selected components, minimizing the reorientation of assemblies and removal of components. A candidate list that is composed of feasible disassembly operations, which are derived from a disassembly matrix of products, guides sequence construction in the implicit solution space and ensures the geometric feasibility of sequences. Preliminary implementation results show the effectiveness of the proposed method.


2015 ◽  
Vol 2015 ◽  
pp. 1-11
Author(s):  
Kai-Cheng Hu ◽  
Chun-Wei Tsai ◽  
Ming-Chao Chiang ◽  
Chu-Sing Yang

Ant colony optimization (ACO) is an efficient heuristic algorithm for combinatorial optimization problems, such as clustering. Because the search strategy of ACO is similar to those of other well-known heuristics, the probability of searching particular regions will be increased if better results are found and kept. Although this kind of search strategy may find a better approximate solution, it also has a high probability of losing the potential search directions. To prevent the ACO from losing too many potential search directions at the early iterations, a novel pheromone updating strategy is presented in this paper. In addition to the “original” pheromone table used to keep track of thepromisinginformation, a second pheromone table is added to the proposed algorithm to keep track of theunpromisinginformation so as to increase the probability of searching directions worse than the current solutions. Several well-known clustering datasets are used to evaluate the performance of the proposed method in this paper. The experimental results show that the proposed method can provide better results than ACO and other clustering algorithms in terms of quality.


Sign in / Sign up

Export Citation Format

Share Document