scholarly journals Benefits of high-voltage SiC-based power electronics in medium-voltage power-distribution grids

2021 ◽  
Vol 7 (1) ◽  
pp. 1-26
Author(s):  
Fred Wang ◽  
Shiqi Ji
2018 ◽  
Vol 924 ◽  
pp. 875-878 ◽  
Author(s):  
Shi Qi Ji ◽  
Xiao Jie Shi ◽  
Zhe Yu Zhang ◽  
Wen Chao Cao ◽  
Fred Wang

This paper evaluates potential benefits of high voltage (HV) SiC devices in medium voltage (MV) distribution grids. The MV microgrid, that HV SiC devices can benefit most, is selected as the “killer application” and focused in this paper. The design and simulation are carried out to compare Si-and SiC-based grid interface converters for the quantitative benefit assessment both at converter level and system level. The SiC-based converter has significant benefits in weight and size, and shows enhanced performance and functionality on power quality, system stability and low voltage ride through (LVRT) as well.


2020 ◽  
Vol 9 (2) ◽  
pp. 427-435
Author(s):  
A. Z. Abdullah ◽  
M. Isa ◽  
M. N. K. H. Rohani ◽  
H. A. Hamid ◽  
M. H. Amlus ◽  
...  

This paper presents the modelling of the online partial discharge (PD) measurement of the medium voltage (MV) power cable. Recently, PD monitoring trends are rapidly increasing due to high demand on reliable systems. Degradation are mainly due to the presence of PD in the high voltage power equipment used. PD measurement is therefore a highly recommended task to early detection of the degradation insulation for high voltage (HV) equipment in order to avoid breakdowns. Real network modelling is necessary to improvise system design in order to find the efficiency in a real power system network. In this paper, modelling focuses on a real distribution network by applying Rogowski coil (RC) as a detection sensor to trigger PD activity. The simulation is performed to determine the functionality and reliability of the system with the RC application in the network. The analysis is performed in the ATP-EMTP and MATLAB Simulink software environments. In addition, this paper contributed to justify the approach of a simplified PD sensor and measurement system. This PD measurement system provides a complete solution in the context of condition-oriented monitoring for the ability to apply the RC to trigger PD activity in the power distribution network. 


Author(s):  
Евгений Юрьевич Зорин ◽  
Александр Александрович Чепелюк ◽  
Юрий Степанович Грищук ◽  
Владимир Владимирович Воинов

2005 ◽  
Vol 45 (5) ◽  
pp. 575 ◽  
Author(s):  
F. D. Shaw ◽  
S. R. Baud ◽  
I. Richards ◽  
D. W. Pethick ◽  
P. J. Walker ◽  
...  

High voltage electrical stimulation applied to the lamb carcass at the end of the dressing procedure often leads to an improvement in overall product quality by reducing the incidence of toughness. It would be advantageous if the same results could be consistently achieved with the use of lower, safer, voltages — medium voltage electrical stimulation. Experiments were conducted to determine the effect of medium voltage electrical stimulation applied to wool-on carcasses on meat quality as assessed using the Sheep Meat Eating Quality protocols. A further experiment examined the interaction of electrical stimulation and meat aging time on the consumer acceptance of lamb meat. In the first experiment, 3 treatments: control (non-stimulated), medium voltage electrical stimulation (applied to the wool-on carcass) and high voltage electrical stimulation (applied at the completion of dressing) were examined. Samples of the loin (LTL) and rump (GM) muscles were evaluated by consumers using Sheep Meat Eating Quality protocols. For both muscles, the consumers gave higher scores for tenderness, juiciness, flavour and overall acceptability to the stimulated product (P<0.001). There were no statistically significant differences between the 2 stimulation treatments. The second experiment was conducted at a commercial lamb-processing abattoir that had installed a prototype automated electrode system designed to work at chain speed. Lambs received either no stimulation (control), low current medium voltage electrical stimulation (constant current 300 mA peak, 15 Hz, maximum voltage 550 V peak) or high current medium voltage electrical stimulation (constant current 600 mA peak, 15 Hz, maximum voltage 550 V peak) immediately after sticking. Electrical stimulation improved both the objective and sensory (Sheep Meat Eating Quality) eating quality attributes of lamb loin muscle when assessed following 2 days of ageing. When expressed according to consumer satisfaction rating, 30, 37 and 70% of the loins receiving low, high or no electrical stimulation, respectively, were rated as unsatisfactory at 2 days of ageing. At 4 days of ageing no loins from carcasses in the low stimulation treatment were rated by consumers to be unsatisfactory (P<0.05) compared with either non-stimulated (40%) or high-stimulated loins (35%). With respect to the effects of aging meat, electrical stimulation improved the consumer score at 2 days post-stunning by 8.9 and 4.7 points for tenderness and overall liking, respectively. Further linear improvements due to aging were similar for both electrical stimulation and unstimulated products. Under conditions of no electrical stimulation used in this experiment, 10 days aging results in tenderness and overall liking scores greater than 60 and with ES similar scores are achieved in 5 days. Consumer scores over 60 greatly reduce the chance of meat being classified as unsatisfactory.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 830
Author(s):  
Filipe F. C. Silva ◽  
Pedro M. S. Carvalho ◽  
Luís A. F. M. Ferreira

The dissemination of low-carbon technologies, such as urban photovoltaic distributed generation, imposes new challenges to the operation of distribution grids. Distributed generation may introduce significant net-load asymmetries between feeders in the course of the day, resulting in higher losses. The dynamic reconfiguration of the grid could mitigate daily losses and be used to minimize or defer the need for network reinforcement. Yet, dynamic reconfiguration has to be carried out in near real-time in order to make use of the most updated load and generation forecast, this way maximizing operational benefits. Given the need to quickly find and update reconfiguration decisions, the computational complexity of the underlying optimal scheduling problem is studied in this paper. The problem is formulated and the impact of sub-optimal solutions is illustrated using a real medium-voltage distribution grid operated under a heavy generation scenario. The complexity of the scheduling problem is discussed to conclude that its optimal solution is infeasible in practical terms if relying upon classical computing. Quantum computing is finally proposed as a way to handle this kind of problem in the future.


2015 ◽  
Vol 30 (7) ◽  
pp. 3553-3562 ◽  
Author(s):  
Rohit Moghe ◽  
Rajendra P. Kandula ◽  
Amrit Iyer ◽  
Deepak Divan

Sign in / Sign up

Export Citation Format

Share Document