Master-slave robot position coordination based on estimated variables

Author(s):  
H. Nijmeijer ◽  
A. Rodriguez-Angeles
Keyword(s):  
2021 ◽  
Vol 11 (3) ◽  
pp. 1287
Author(s):  
Tianyan Chen ◽  
Jinsong Lin ◽  
Deyu Wu ◽  
Haibin Wu

Based on the current situation of high precision and comparatively low APA (absolute positioning accuracy) in industrial robots, a calibration method to enhance the APA of industrial robots is proposed. In view of the "hidden" characteristics of the RBCS (robot base coordinate system) and the FCS (flange coordinate system) in the measurement process, a comparatively general measurement and calibration method of the RBCS and the FCS is proposed, and the source of the robot terminal position error is classified into three aspects: positioning error of industrial RBCS, kinematics parameter error of manipulator, and positioning error of industrial robot end FCS. The robot position error model is established, and the relation equation of the robot end position error and the industrial robot model parameter error is deduced. By solving the equation, the parameter error identification and the supplementary results are obtained, and the method of compensating the error by using the robot joint angle is realized. The Leica laser tracker is used to verify the calibration method on ABB IRB120 industrial robot. The experimental results show that the calibration method can effectively enhance the APA of the robot.


Author(s):  
JUAN ANDRADE-CETTO ◽  
ALBERTO SANFELIU

A system that builds and maintains a dynamic map for a mobile robot is presented. A learning rule associated to each observed landmark is used to compute its robustness. The position of the robot during map construction is estimated by combining sensor readings, motion commands, and the current map state by means of an Extended Kalman Filter. The combination of landmark strength validation and Kalman filtering for map updating and robot position estimation allows for robust learning of moderately dynamic indoor environments.


Author(s):  
Myeong In Seo ◽  
Woo Jin Jang ◽  
Junhwan Ha ◽  
Kyongtae Park ◽  
Dong Hwan Kim

This study introduces the control method of duct cleaning robot that enables real-time position tracking and self-driving over L-shaped and T-shaped duct sections. The developed robot has three legs and is designed to flexibly respond to duct sizes. The position of the robot inside the duct is identified using the UWB communication module and the location estimation algorithm. Although UWB communication has relatively large distance error within the metal, the positional error was reduced by introducing appropriate filters to estimate the robot position accurately. TCP/IP communication allows commands to be sent between the PC and the robot and to receive live images of the camera attached to the robot. Using Haar-like and classifiers, the robot can recognize the type of duct that is difficult to overcome, such as L-shaped and T-shaped duct, and it moves successfully inside the duct according to the corresponding moving algorithms.


Jurnal INFORM ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 28-34
Author(s):  
Bayu Sandi Marta ◽  
Dewi Mutiara Sari

Slip on the mobile robot has a significant impact on the maneuver and the accuracy of the mobile robot movement. The slip phenomenon occurs because of the loss of traction between the surface and the wheels due to the spontaneous acceleration or declaration application. This paper presents a method to improve DC motor performance by using slip control as an observer such that the slip phenomenon effect can be minimized. The performance that will be analyzed is the accuracy of motor speed and robot position accuracy when the robot is moving. The result shows that the Root Mean Squared Error (RMSE) for the motor speed performance that does not use slip control is 2.680, the system using slip control produces RMSE 1.3393. Regarding the robot position accuracy, the RMSE of the system that does not use slip control is 0.0379, the system using slip control is 0.0065.


2018 ◽  
Vol 15 (1) ◽  
pp. 172988141875457 ◽  
Author(s):  
Héctor M Becerra ◽  
J Armando Colunga ◽  
Jose Guadalupe Romero

This article is devoted to the design of robust position-tracking controllers for a perturbed wheeled mobile robot. We address the final objective of pose-regulation in a predefined time, which means that the robot position and orientation must reach desired final values simultaneously in a user-defined time. To do so, we propose the robust tracking of adequate trajectories for position coordinates, enforcing that the robot’s heading evolves tangent to the position trajectory and consequently the robot reaches a desired orientation. The robust tracking is achieved by a proportional–integral action or by a super-twisting sliding mode control. The main contribution of this article is a kinematic control approach for pose-regulation of wheeled mobile robots in which the orientation angle is not directly controlled in the closed-loop, which simplifies the structure of the control system with respect to existing approaches. An offline trajectory planning method based on parabolic and cubic curves is proposed and integrated with robust controllers to achieve good accuracy in the final values of position and orientation. The novelty in the trajectory planning is the generation of a set of candidate trajectories and the selection of one of them that favors the correction of the robot’s final orientation. Realistic simulations and experiments using a real robot show the good performance of the proposed scheme even in the presence of strong disturbances.


Author(s):  
Xianzhi Wang ◽  
Pingguo Huang ◽  
Yutaka Ishibashi ◽  
Takashi Okuda

2021 ◽  
Author(s):  
Ahmet TOP ◽  
Muammer GÖKBULUT

Abstract In this study, a Bluetooth-based Android application interface is developed to perform a manual and automatic control of a four-wheel-driven mobile robot designed for education, research, health, military, and many other fields. The proposed application with MIT App Inventor consists of three components: the main screen, the manual control screen, and the automatic control screen. The main screen is where the actions of the control preference selection such as manual control and automatic control and the Bluetooth connection between the mobile robot and Android phone occur. When the robot is operated manually for calibration or manual positioning purposes, the manual control screen is employed to adjust the desired robot movement and speed by hand. In the case of the need for automatic motion control, the desired robot position and speed data are inserted into the mobile robot processor through the automatic control screen. At the first stage of the work, the proposed Android application is developed with the design and block editors of the MIT App Inventor. The compiled application is then installed on the Android phone. Next, the communication between the Arduino microcontroller used for the robot control with the Bluetooth protocol and the Android application is established. The accuracy of the data dispatched to the Arduino is tested on the serial connection screen. It is validated that the data from the Android application is transferred to Arduino smoothly. At the end of this study, the manual and automatic controls of the proposed mobile robot are performed experimentally and success of the coordination between the Android application and the mobile robot are demonstrated.


Sign in / Sign up

Export Citation Format

Share Document