Loop Antenna Array System with Simultaneous Operation of OAM Multiplex Communication and Wireless Power Transfer

Author(s):  
Wataru Wada ◽  
Ryo Ishikawa ◽  
Akira Saitou ◽  
Hisanosuke Miyake ◽  
Haruki Kikuchi ◽  
...  
Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 415
Author(s):  
Haiyue Wang ◽  
Lianwen Deng ◽  
Heng Luo ◽  
Junsa Du ◽  
Daohan Zhou ◽  
...  

The microwave wireless power transfer (MWPT) technology has found a variety of applications in consumer electronics, medical implants and sensor networks. Here, instead of a magnetic resonant coupling wireless power transfer (MRCWPT) system, a novel MWPT system based on a frequency reconfigurable (covering the S-band and C-band) microstrip patch antenna array is proposed for the first time. By switching the bias voltage-dependent capacitance value of the varactor diode between the larger main microstrip patch and the smaller side microstrip patch, the working frequency band of the MWPT system can be switched between the S-band and the C-band. Specifically, the operated frequencies of the antenna array vary continuously within a wide range from 3.41 to 3.96 GHz and 5.7 to 6.3 GHz. For the adjustable range of frequencies, the return loss of the antenna array is less than −15 dB at the resonant frequency. The gain of the frequency reconfigurable antenna array is above 6 dBi at different working frequencies. Simulation results verified by experimental results have shown that power transfer efficiency (PTE) of the MWPT system stays above 20% at different frequencies. Also, when the antenna array works at the resonant frequency of 3.64 GHz, the PTE of the MWPT system is 25%, 20.5%, and 10.3% at the distances of 20 mm, 40 mm, and 80 mm, respectively. The MWPT system can be used to power the receiver at different frequencies, which has great application prospects and market demand opportunities.


Author(s):  
Mohammadali Mohammadi ◽  
Batu K. Chalise ◽  
Himal A. Suraweera ◽  
Hien Quoc Ngo ◽  
Zhiguo Ding

Author(s):  
Hugo Flores-Garcia ◽  
Deon Lucien ◽  
Tyler McPherson ◽  
Sungkyun Lim

2021 ◽  
Vol 60 (2) ◽  
pp. 2707-2714
Author(s):  
Alla M. Eid ◽  
Ahmed Alieldin ◽  
Abdelrahman M. El-Akhdar ◽  
Ahmed F. El-Agamy ◽  
Walid M. Saad ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Muayad Kod ◽  
Jiafeng Zhou ◽  
Yi Huang ◽  
Muaad Hussein ◽  
Abed P. Sohrab ◽  
...  

An approach to improve wireless power transfer (WPT) to implantable medical devices using loop antennas is presented. The antenna exhibits strong magnetic field and dense flux line distribution along two orthogonal axes by insetting the port inside the antenna area. This design shows excellent performance against misalignment in the y-direction and higher WPT as compared with a traditional square loop antenna. Two antennas were optimized based on this approach, one wearable and the other implantable. Both antennas work at both the ISM (Industrial, Scientific, and Medical) band of 433 MHz for WPT and the MedRadio (Medical Device Radiocommunications Service) band of 401–406 MHz for communications. To test the WPT for implantable medical devices, a miniaturized rectifier with a size of 10 mm × 5 mm was designed to integrate with the antenna to form an implantable rectenna. The power delivered to a load of 4.7 kΩ can be up to 1150 μW when 230 mW power is transmitted which is still under the safety limit. This design can be used to directly power a pacemaker, a nerve stimulation device, or a glucose measurement system which requires 70 μW, 100 μW, and 48 μW DC power, respectively.


Sign in / Sign up

Export Citation Format

Share Document