scholarly journals Synthesis of a spatially band-limited plane wave in the time-domain using wave field synthesis

Author(s):  
Nara Hahn ◽  
Fiete Winter ◽  
Sascha Spors
2016 ◽  
Vol 64 (7) ◽  
pp. 3141-3150 ◽  
Author(s):  
Afroza Khatun ◽  
Veli-Matti Kolmonen ◽  
Veikko Hovinen ◽  
Dristy Parveg ◽  
Markus Berg ◽  
...  

Geophysics ◽  
1985 ◽  
Vol 50 (11) ◽  
pp. 1756-1778 ◽  
Author(s):  
Denis P. Schmitt ◽  
Michel Bouchon

The discrete wavenumber method is used to compute synthetic full‐waveform acoustic logs in axisymmetric multilayered boreholes and to perform the frequency‐wavenumber analysis of the radiated wave field. The stress‐displacement vector is propagated through the layers using a numerically improved formulation of the Thomson‐Haskell method. In the time domain, all the trapped and interface modes overlap. On the contrary, the representations of the spectral energy density of the scattered wave field in the frequency axial‐wavenumber domain, for various radial positions of observation, allow the recognition and identification of the different wave types as well as their repartition of energy. In particular, these diagrams show the close relation between the resonance frequencies of the borehole and the significant low‐frequency energy of the pseudo‐Rayleigh modes. They also facilitate the interpretation of some of the physical phenomena which occur during the propagation in a complex borehole environment. We present the configurations of a well‐bonded and unbonded cased hole, an invaded zone, and a mudcake. For all of these models, we consider a “fast” formation in which the S-wave velocity is higher than the bore fluid velocity and a “slow” formation. The presence of an elastic tool at the center of the borehole is also investigated. The associated microseismograms, computed for a series of source‐receiver spacings, characterize in the time domain the observations previously made.


2017 ◽  
Vol 5 (1) ◽  
pp. T1-T9 ◽  
Author(s):  
Rui Zhang ◽  
Kui Zhang ◽  
Jude E. Alekhue

More and more seismic surveys produce 3D seismic images in the depth domain by using prestack depth migration methods, which can present a direct subsurface structure in the depth domain rather than in the time domain. This leads to the increasing need for applications of seismic inversion on the depth-imaged seismic data for reservoir characterization. To address this issue, we have developed a depth-domain seismic inversion method by using the compressed sensing technique with output of reflectivity and band-limited impedance without conversion to the time domain. The formulations of the seismic inversion in the depth domain are similar to time-domain methods, but they implement all the elements in depth domain, for example, a depth-domain seismic well tie. The developed method was first tested on synthetic data, showing great improvement of the resolution on inverted reflectivity. We later applied the method on a depth-migrated field data with well-log data validated, showing a great fit between them and also improved resolution on the inversion results, which demonstrates the feasibility and reliability of the proposed method on depth-domain seismic data.


2021 ◽  
Vol 13 (18) ◽  
pp. 3683
Author(s):  
David Vargas ◽  
Ivan Vasconcelos ◽  
Matteo Ravasi ◽  
Nick Luiken

Multidimensional deconvolution constitutes an essential operation in a variety of geophysical scenarios at different scales ranging from reservoir to crustal, as it appears in applications such as surface multiple elimination, target-oriented redatuming, and interferometric body-wave retrieval just to name a few. Depending on the use case, active, microseismic, or teleseismic signals are used to reconstruct the broadband response that would have been recorded between two observation points as if one were a virtual source. Reconstructing such a response relies on the the solution of an ill-conditioned linear inverse problem sensitive to noise and artifacts due to incomplete acquisition, limited sources, and band-limited data. Typically, this inversion is performed in the Fourier domain where the inverse problem is solved per frequency via direct or iterative solvers. While this inversion is in theory meant to remove spurious events from cross-correlation gathers and to correct amplitudes, difficulties arise in the estimation of optimal regularization parameters, which are worsened by the fact they must be estimated at each frequency independently. Here we show the benefits of formulating the problem in the time domain and introduce a number of physical constraints that naturally drive the inversion towards a reduced set of stable, meaningful solutions. By exploiting reciprocity, time causality, and frequency-wavenumber locality a set of preconditioners are included at minimal additional cost as a way to alleviate the dependency on an optimal damping parameter to stabilize the inversion. With an interferometric redatuming example, we demonstrate how our time domain implementation successfully reconstructs the overburden-free reflection response beneath a complex salt body from noise-contaminated up- and down-going transmission responses at the target level.


Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. VE135-VE144 ◽  
Author(s):  
Denes Vigh ◽  
E. William Starr

Prestack depth migration has been used for decades to derive velocity distributions in depth. Numerous tools and methodologies have been developed to reach this goal. Exploration in geologically more complex areas exceeds the abilities of existing methods. New data-acquisition and data-processing methods are required to answer these new challenges effectively. The recently introduced wide-azimuth data acquisition method offers better illumination and noise attenuation as well as an opportunity to more accurately determine velocities for imaging. One of the most advanced tools for depth imaging is full-waveform inversion. Prestack seismic full-waveform inversion is very challenging because of the nonlinearity and nonuniqueness of the solution. Combined with multiple iterations of forward modeling and residual wavefield back propagation, the method is computer intensive, especially for 3D projects. We studied a time-domain, plane-wave implementation of 3D waveform inversion. We found that plane-wave gathers are an attractive input to waveform inversion with dramatically reduced computer run times compared to traditional shot-gather approaches. The study was conducted on two synthetic data sets — Marmousi2 and SMAART Pluto 1.5 — and a field data set. The results showed that a velocity field can be reconstructed well using a multiscale time-domain implementation of waveform inversion. Although the time-domain solution does not take advantage of wavenumber redundancy, the method is feasible on current computer architectures for 3D surveys. The inverted velocity volume produces a quality image for exploration geologists by using numerous iterations of waveform inversion.


Geophysics ◽  
2017 ◽  
Vol 82 (2) ◽  
pp. V105-V116 ◽  
Author(s):  
Kristopher A. Innanen

Practical internal multiple prediction and removal is a high-priority area of research in seismic processing technology. Its significance increases in plays in which data are complex and sophisticated quantitative interpretation methods are apt to be applied. When the medium is unknown and/or complex, and moveout-based primary/multiple discrimination is not possible, inverse scattering-based internal multiple attenuation is the method of choice. However, challenges remain for its application in certain environments. For instance, when generators are widely distributed and are separated in space by a range of distances, optimum prediction parameters such as [Formula: see text] (which limits the proximity of events combined in the prediction) are difficult to determine. In some cases, we find that no stationary value of [Formula: see text] can optimally predict all multiples without introducing damaging artifacts. A reformulation and implementation in the time domain permits time nonstationarity to be enforced on [Formula: see text], after which a range of possible data- and geology-driven criteria for selecting an [Formula: see text] schedule can be analyzed. The 1D and 1.5D versions of the time-nonstationary algorithm are easily derived and can be shown to add a new element of precision to prediction in challenging environments. Merging these ideas with multidimensional plane-wave domain versions of the algorithm provides 2D/3D extensions.


Sign in / Sign up

Export Citation Format

Share Document