Improving Torque and Speed Estimation Accuracy by Conjoint Parameter Identification and Unscented Kalman Filter Design for Induction Machines

Author(s):  
Oliver Wallseheid ◽  
Maximilian Schenke ◽  
Joachim Bocker
2020 ◽  
Vol 23 (12) ◽  
pp. 2653-2668
Author(s):  
Javier Naranjo-Pérez ◽  
Javier Fernando Jiménez-Alonso ◽  
Andrés Sáez

Soil–structure interaction is a key aspect to take into account when simulating the response of civil engineering structures subjected to dynamic actions. To this end, and due to its simplicity and ease of implementation, the dynamic Winkler model has been widely used in practical engineering applications. In this model, soil–structure interaction is simulated by means of spring–damper elements. A crucial point to guarantee the adequate performance of the approach is to accurately estimate the constitutive parameters of these elements. To this aim, this article proposes the application of a recently developed parameter identification method to address such problem. In essence, the parameter identification problem is transformed into an optimization problem, so that the parameters of the dynamic Winkler model are estimated by minimizing the relative differences between the numerical and experimental modal properties of the overall soil–structure system. A recent and efficient hybrid algorithm, based on the combination of the unscented Kalman filter and multi-objective harmony search algorithms, is satisfactorily implemented to solve the optimization problem. The performance of this proposal is then validated via its implementation in a real case-study involving an integral footbridge.


2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Wenxian Duan ◽  
Chuanxue Song ◽  
Yuan Chen ◽  
Feng Xiao ◽  
Silun Peng ◽  
...  

An accurate state of charge (SOC) can provide effective judgment for the BMS, which is conducive for prolonging battery life and protecting the working state of the entire battery pack. In this study, the first-order RC battery model is used as the research object and two parameter identification methods based on the least square method (RLS) are analyzed and discussed in detail. The simulation results show that the model parameters identified under the Federal Urban Driving Schedule (HPPC) condition are not suitable for the Federal Urban Driving Schedule (FUDS) condition. The parameters of the model are not universal through the HPPC condition. A multitimescale prediction model is also proposed to estimate the SOC of the battery. That is, the extended Kalman filter (EKF) is adopted to update the model parameters and the adaptive unscented Kalman filter (AUKF) is used to predict the battery SOC. The experimental results at different temperatures show that the EKF-AUKF method is superior to other methods. The algorithm is simulated and verified under different initial SOC errors. In the whole FUDS operating condition, the RSME of the SOC is within 1%, and that of the voltage is within 0.01 V. It indicates that the proposed algorithm can obtain accurate estimation results and has strong robustness. Moreover, the simulation results after adding noise errors to the current and voltage values reveal that the algorithm can eliminate the sensor accuracy effect to a certain extent.


2005 ◽  
Vol 71 (708) ◽  
pp. 2563-2570 ◽  
Author(s):  
Nozomu ARAKI ◽  
Michito OKADA ◽  
Yasuo KONISHI ◽  
Hiroyuki ISHIGAKI

2012 ◽  
Vol 466-467 ◽  
pp. 1329-1333
Author(s):  
Jing Mu ◽  
Chang Yuan Wang

We present the new filters named iterated cubature Kalman filter (ICKF). The ICKF is implemented easily and involves the iterate process for fully exploiting the latest measurement in the measurement update so as to achieve the high accuracy of state estimation We apply the ICKF to state estimation for maneuver reentry vehicle. Simulation results indicate ICKF outperforms over the unscented Kalman filter and square root cubature Kalman filter in state estimation accuracy.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Luping Chen ◽  
Liangjun Xu ◽  
Ruoyu Wang

The state of charge (SOC) plays an important role in battery management systems (BMS). However, SOC cannot be measured directly and an accurate state estimation is difficult to obtain due to the nonlinear battery characteristics. In this paper, a method of SOC estimation with parameter updating by using the dual square root cubature Kalman filter (DSRCKF) is proposed. The proposed method has been validated experimentally and the results are compared with dual extended Kalman filter (DEKF) and dual square root unscented Kalman filter (DSRUKF) methods. Experimental results have shown that the proposed method has the most balance performance among them in terms of the SOC estimation accuracy, execution time, and convergence rate.


Author(s):  
Wael Farag ◽  

In this paper, a real-time road-Object Detection and Tracking (LR_ODT) method for autonomous driving is proposed. The method is based on the fusion of lidar and radar measurement data, where they are installed on the ego car, and a customized Unscented Kalman Filter (UKF) is employed for their data fusion. The merits of both devices are combined using the proposed fusion approach to precisely provide both pose and velocity information for objects moving in roads around the ego car. Unlike other detection and tracking approaches, the balanced treatment of both pose estimation accuracy and its real-time performance is the main contribution in this work. The proposed technique is implemented using the high-performance language C++ and utilizes highly optimized math and optimization libraries for best real-time performance. Simulation studies have been carried out to evaluate the performance of the LR_ODT for tracking bicycles, cars, and pedestrians. Moreover, the performance of the UKF fusion is compared to that of the Extended Kalman Filter fusion (EKF) showing its superiority. The UKF has outperformed the EKF on all test cases and all the state variable levels (-24% average RMSE). The employed fusion technique show how outstanding is the improvement in tracking performance compared to the use of a single device (-29% RMES with lidar and -38% RMSE with radar).


Author(s):  
Xiaohua Li ◽  
Ya'an Li ◽  
Xiaofeng Lu ◽  
Chenxu Zhao ◽  
Jing Yu

Underwater bearing-only multitarget tracking in clutter environment is challenging because of the measurement nonlinearity, range unobservability, and data association uncertainty. In terms of the principle of expectation maximization, combining the extended Kalman filter (EKF) and unscented Kalman filter algorithm(UKF), a new bearing-only multi-sensor multitarget tracking via probabilistic multiple hypothesis tracking(PMHT) algorithm is proposed. The PMHT algorithm introduces an association variable to deal with the data association uncertainty problem between the measurements and the targets. Furthermore, the EKF-based PMHT for multi-sensor multitarget system is simplified, which obviate the need to "stack" the synthetic measurements and can reduce the computation cost. The estimation accuracy of the EKF based on PMHT approach and UKF based on PMHT approach in simulation experiments for underwater bearing-only cross-moving targets and closely spaced targets for the case of stationary multiple observations and maneuvering single observation under dense clutter environment is analyzed. The experimental results demonstrate that the present algorithm is very well in a highly clutter environment and its computational load is low, which confirms the effectiveness of the algorithm to the bearing-only multitarget tracking in dense clutter.


Sign in / Sign up

Export Citation Format

Share Document