scholarly journals Three-dimensional cooperative guidance law for multiple missiles with impact angle constraint

2020 ◽  
Vol 31 (6) ◽  
pp. 1286-1296
Author(s):  
Yang Biao ◽  
Jing Wuxing ◽  
Gao Changsheng
IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 29755-29763
Author(s):  
Mu Lin ◽  
Xiangjun Ding ◽  
Chunyan Wang ◽  
Li Liang ◽  
Jianan Wang

2021 ◽  
Vol 11 (22) ◽  
pp. 10857
Author(s):  
Mingyu Cong ◽  
Xianghong Cheng ◽  
Zhiquan Zhao ◽  
Zhijun Li

Cooperative terminal guidance with impact angle constraint is a key technology to achieve a saturation attack and improve combat effectiveness. The present study envisaged cooperative terminal guidance with impact angle constraint for multiple missiles. In this pursuit, initially, the three-dimensional cooperative terminal guidance law with multiple constraints was studied. The impact time cooperative strategy of virtual leader missile and follower missiles was designed by introducing virtual leader missiles. Subsequently, based on the distributed model prediction control combined with the particle swarm optimization algorithm, a cooperative terminal guidance algorithm was designed for multiple missiles with impact angle constraint that met the guidance accuracy. Finally, the effectiveness of the algorithm was verified using simulation experiments.


Author(s):  
Xinghe Zhou ◽  
Weihong Wang ◽  
Zhenghua Liu

For the guidance problem of multiple missiles attacking a maneuvering target simultaneously in plane, a novel fixed-time distributed cooperative guidance law with impact angle constraint is designed in this paper. The design process of distributed cooperative guidance law can be roughly divided into two parts. First, based on the nonsingular terminal sliding mode control, a cooperative guidance law on the line-of-sight (LOS) direction is developed, which can guarantee that all missiles hit the maneuvering target simultaneously. Second, another guidance law in normal direction of the LOS direction is designed to achieve the fixed-time convergence of LOS angular rate and LOS angle. Finally, numerical simulations verify the effectiveness of the proposed cooperative guidance law for different engagement scenarios.


Author(s):  
Peng Li ◽  
Qi Liu ◽  
Chen-Yu He ◽  
Xiao-Qing Liu

This paper investigates the three-dimensional guidance with the impact angle constraint, actuator faults and input constraint. Firstly, an adaptive three-dimensional guidance law with impact angle constraint is designed by using the terminal sliding mode control and nonhomogeneous disturbance observer. Then, in order to solve the problem of the input saturation and actuator faults, an adaptive anti-saturation fault-tolerant three-dimensional law is proposed by using the hyperbolic tangent function based on the passive fault-tolerant control. Finally, the effectiveness of the designed guidance laws is verified by using the Lyapunov function and simulation.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 180467-180481 ◽  
Author(s):  
Ye Tian ◽  
Yuanli Cai ◽  
Zhenhua Yu ◽  
Yifan Deng

2022 ◽  
pp. 1-19
Author(s):  
S. Liu ◽  
B. Yan ◽  
R. Liu ◽  
P. Dai ◽  
J. Yan ◽  
...  

Abstract The cooperative guidance problem of multiple inferior missiles intercepting a hypersonic target with the specific impact angle constraint in the two-dimensional plane is addressed in this paper, taking into consideration variations in a missile’s speed. The guidance law is designed with two subsystems: the direction of line-of-sight (LOS) and the direction of normal to LOS. In the direction of LOS, by applying the algebraic graph theory and the consensus theory, the guidance command is designed to make the system convergent in a finite time to satisfy the goal of cooperative interception. In the direction of normal to LOS, the impact angle is constrained to transform into the LOS angle at the time of interception. In view of the difficulty of measuring unknown target acceleration information in real scenarios, the guidance command is designed by utilising a super-twisting algorithm based on a nonsingular fast-terminal sliding mode (NFTSM) surface. Numerical simulation results manifest that the proposed guidance law performs efficiently and the guidance commands are free of chattering. In addition, the overall performance of this guidance law is assessed with Monte Carlo runs in the presence of measurement errors. The simulation results demonstrate that the robustness can be guaranteed, and that overall efficiency and accuracy in intercepting the hypersonic target are achieved.


Sign in / Sign up

Export Citation Format

Share Document