scholarly journals An exceptional surface occurrence: the middle to upper Miocene succession of Pécs-Danitzpuszta (SW Hungary)

2021 ◽  
Vol 151 (3) ◽  
pp. 235-252
Author(s):  
Krisztina Sebe ◽  
Gyula Konrád ◽  
Orsolya Sztanó

The Pécs-Danitzpuszta sand pit is the most important outcrop of the oldest Pannonian (upper Miocene, Tortonian) deposits in southern Hungary. A trench excavated in 2018 exposed Lake Pannon deposits and underlying Paratethys strata down to the upper Badenian (Serravallian), and together with the sand pit they make up a continuous sedimentary succession with a true thickness of ~220 metres. Due to tectonic deformation, middle Miocene deposits and carbonates in the lowermost Pannonian are overturned. Layers become vertical close to the marl-sand boundary, then the dip changes to normal, with continuously decreasing dip angles. The exposed succession starts with 5 m of upper Badenian (13.8-12.6 Ma old) calcareous marls and sandy limestones with sublittoral, then littoral molluscs, which were deposited in the normal salinity seawaters of the Central Paratethys. The overlying 8 m of sand, silt, sandy breccia and conglomerate are fossil-free,; only the lowermost silt layer contains reworked Badenian microfauna. This unit probably accumulated from gravity-driven flows in a fan-like, probably terrestrial depositional setting. The next 7.5 m of frequently alternating thin-bedded limestones, marls and clays with sublittoral biota represent rapid transgression. Foraminifers, ostracods, molluscs and calcareous nannoplankton indicate late Sarmatian, then Pannonian age for this interval. However, the locations of the boundaries indicated by the various groups are not are not consistent, making the position of the Sarmatian/Pannonian boundary uncertain. The Sarmatian beds with marine fossils still accumulated in the Paratethys, between ~12.1–11.6 Ma, under varying salinities due among others to temporary freshwater input. The Pannonian strata already represent sediments of the brackish Lake Pannon. Above these beds, uniform calcareous marl becomes dominant with some clay layers and graded or structureless conglomerate to sandstone interbeds. The deposition of the overall 64- m- thick Pannonian calcareous marl section took place in the open, probably few -hundred -metres -deep water of the lake between ~11.62 and 10.5–10.2 Ma. It may represent a rare, well-exposed surface occurrence of the Endrőd Formation which is known from thousands of wells in the Pannonian Basin. Above this section, a 6-7 -m- thick transitional interval of silty marls and sands is followed by ~140 m of limonitic, pebbly sands. They have poor to moderate sorting and rounding, metre -thick beds with transitional boundaries and abundant fossils and clasts reworked from older Miocene units. Their accumulation took place between 10.2-10.5 and 9.6 Ma by gravity flows connected to deep-water portions of fan deltas.

2020 ◽  
Vol 73 (3) ◽  
pp. 177-195 ◽  
Author(s):  
Krisztina Sebe ◽  
◽  
Marijan Kovačić ◽  
Imre Magyar ◽  
Krešimir Krizmanić ◽  
...  

Upper Miocene to Pliocene (Pannonian) sediments of the Pannonian Basin System accumulated in the brackish Lake Pannon and the fluvial feeder systems, between 11.6-2.6 Ma. Their stratigraphic subdivision has been problematic for a long time due to the laterally prograding architecture of the basin fill and the historically independently evolving stratigraphic schemes of the neighbouring countries. We correlated the lithostratigraphic units of the Lake Pannon deposits between Hungary and Croatia in the Drava Basin, using lithological, sedimentological and palaeontological data from boreholes and outcrops, and seismic correlation. The Croatica and Medvedski breg formations in Croatia correspond to the Endrőd Fm. in Hungary, comprising shallow to deep water, open lacustrine, calcareous to argillaceous marls. The Andraševec fm. in Croatia corresponds to the Szolnok and Algyő Fms. in Hungary, consisting of sandstones and siltstones of turbidite systems and of clay marls deposited on the shelf-break slope. The Nova Gradiška fm. in Croatia is an equivalent of the Újfalu Fm. in Hungary, built up of a variety of lithologies, including sand, silt, clay and huminitic clay, deposited in deltaic environments. The Pluska fm. in Croatia corresponds to the Zagyva Fm. in Hungary, consisting of variegated clays, silts, sands and lignites, deposited in alluvial and fluvial environments. Coarse-grained (sand, gravel) basal layers are assigned to the Kálla and Békés Fms. and the Sveti Matej member of the Croatica fm. Coarse-grained intercalations within the deep-water marls belong to the Dorozsma Member of the Endrőd Fm. in Hungary, and to the Bačun member of the Medvedski breg fm. in Croatia. Sediment transport and lateral accretion of the shelf edge in the Drava Basin took place from the N, NW, and W, to the S, SE, and E, respectively. According to the biostratigraphic and chronostratigraphic analyses, the oldest shelf-break slopes in the Mura Basin are more than 8 Ma old, whereas the youngest ones in the southeasternmost part of the Drava Basin may be Pliocene in age (younger than 5.3 Ma). Thus, the 180 km long and at least 700 m deep Drava Basin was transformed into a fluvial plain during the last 3.5 million years of the Miocene.


2013 ◽  
Vol 103 ◽  
pp. 149-167 ◽  
Author(s):  
Orsolya Sztanó ◽  
Péter Szafián ◽  
Imre Magyar ◽  
Anna Horányi ◽  
Gábor Bada ◽  
...  

2018 ◽  
Vol 6 (1) ◽  
pp. SB65-SB76 ◽  
Author(s):  
Ivanišević Saša ◽  
Radivojević Dejan

Exploration for oil and gas in mature areas, such as the Pannonian Basin, can benefit from reexamination of old data using more advanced modern workflows that focus on the temporal and spatial aspects of sediment deposition. Specifically, we apply a new environment of deposition model that interprets the Upper Miocene-Pliocene sediments as being deposited in a rapidly filling basin characterized by quick shelf edge progradation from the northwest toward the southeast. Reconstruction of this shelf edge trajectory reveals the absence of a Lake Pannon level drop during this time; rather, deposition was done during a highstand systems tract. We divided the Serbian postrift sediments into the Hetin, Majdan, Mokrin, Kikinda, and Paludina Formations used by geoscientists in Hungary and Slovakia. Hemipelagic marls of the Hetin Formation serve as the source rocks for the Majdan Formation basin-center turbidite reservoirs. These turbidite reservoirs are in turn sealed by clays and marls of the Mokrin slope formation. In contrast to previous interpretations of this part of the basin, our new sequence stratigraphy interpretation of the depositional environment interpretation significantly reduces the miscorrelation of the target sandstone reservoirs. Application of this sequence stratigraphy model also promises a better understanding of the other elements of the hydrocarbon system, which should lead to better production performance and reservoir management.


2011 ◽  
Vol 62 (3) ◽  
pp. 267-278 ◽  
Author(s):  
Ljupko Rundić ◽  
Meri Ganić ◽  
Slobodan Knežević ◽  
Ali Soliman

Upper Miocene Pannonian sediments from Belgrade (Serbia): new evidence and paleoenvironmental considerationsThe Late Miocene sublittoral marls of the Pannonian Stage (the long-lived Lake Pannon) were studied. From neotectonic point of view, the investigated area represents a natural border between two different morphostructural domains: the Pannonian Basin to the north and the Peri-Pannonian Realm to the south. More than 20 mollusc and 34 ostracod species were identified which indicate the upper part of the Lower Pannonian and the lower part of the Middle Pannonian ("Serbian") predominantly. The identified dinoflagellate cyst assemblage (21 taxa) hinders assignment of the studied samples to a Pannonian substage but supports the high endemism of the Pannonian flora. The lithostratigraphical, paleontological, and paleoecological analyses indicate a mesohaline (8-16 ‰), sublittoral (<90 m deep) environment of the early Lake Pannon. The estimated stratigraphic range for the investigated deposits is 9.8-11.4 Ma.


2011 ◽  
Vol 62 (2) ◽  
pp. 155-169 ◽  
Author(s):  
Wieske Paulissen ◽  
Stefan Luthi ◽  
Patrick Grunert ◽  
Stjepan Ćorić ◽  
Mathias Harzhauser

Integrated high-resolution stratigraphy of a Middle to Late Miocene sedimentary sequence in the central part of the Vienna BasinIn order to determine the relative contributions of tectonics and eustasy to the sedimentary infill of the Vienna Basin a high-resolution stratigraphic record of a Middle to Late Miocene sedimentary sequence was established for a well (Spannberg-21) in the central part of the Vienna Basin. The well is located on an intrabasinal high, the Spannberg Ridge, a location that is relatively protected from local depocentre shifts. Downhole magnetostratigraphic measurements and biostratigraphical analysis form the basis for the chronostratigraphic framework. Temporal gaps in the sedimentary sequence were quantified from seismic data, well correlations and high-resolution electrical borehole images. Stratigraphic control with this integrated approach was good in the Sarmatian and Pannonian, but difficult in the Badenian. The resulting sedimentation rates show an increase towards the Upper Sarmatian from 0.43 m/kyr to > 1.2 m/kyr, followed by a decrease to relatively constant values around 0.3 m/kyr in the Pannonian. The sequence reflects the creation of accommodation space during the pull-apart phase of the basin and the subsequent slowing of the tectonic activity. The retreat of the Paratethys from the North Alpine Foreland Basin during the Early Sarmatian temporarily increased the influx of coarsergrained sediment, but eventually the basin acted mostly as a by-pass zone of sediment towards the Pannonian Basin. At a finer scale, the sequence exhibits correlations with global eustasy indicators, notably during the Sarmatian, the time of greatest basin subsidence and full connectivity with the Paratethyan system. In the Pannonian the eustatic signals become weaker due to an increased isolation of the Vienna Basin from Lake Pannon.


2010 ◽  
Vol 61 (1) ◽  
pp. 55-69 ◽  
Author(s):  
Boris Vrbanac ◽  
Josipa Velić ◽  
Tomislav Malvić

Sedimentation of deep-water turbidites in the SW part of the Pannonian BasinThe Sava Depression and the Bjelovar Subdepression belong to the SW margin of the Pannonian Basin System, which was part of the Central Paratethys during the Pannonian period. Upper Pannonian deposits of the Ivanic-Grad Formation in the Sava Depression include several lithostratigraphic members such as Iva and Okoli Sandstone Member or their lateral equivalents, the Zagreb Member and Lipovac Marlstone Member. Their total thickness in the deepest part of the Sava Depression reaches up to 800 meters, while it is 100-200 meters in the margins of the depression. Deposits in the depression are composed of 4 facies. In the period of turbiditic activities these facies are primarily sedimented as different sandstone bodies. In the Bjelovar Subdepression, two lithostratigraphic members (lateral equivalent) were analysed, the Zagreb Member and Okoli Sandstone Member. The thickness of the Bjelovar Subdepression ranges from 50 meters along the S and SE margins to more than 350 meters along the E margin. Generally, detritus in the north-west part of the analysed area originated from a single source, the Eastern Alps, as demonstrated by sedimentological and physical properties, the geometry of the sandstone body and the fossil content. This clastic material was found to be dispersed throughout the elongated and relatively narrow Sava Depression and in the smaller Bjelovar Subdepression. Sedimentation primarily occurred in up to 200 meters water depth and was strongly influenced by the sub-aqueous paleorelief, which determined the direction of the flow of turbidity currents and sandstone body geometries. The main stream with medium- and fine-grained material was separated by two independent turbiditic flows from N-NW to the SE-E. Variability in the thickness of sandstone bodies is the result of differences in subsidence and cycles of progradation and retrogradation of turbidite fans.


Sign in / Sign up

Export Citation Format

Share Document