scholarly journals Correlation of upper Miocene–Pliocene Lake Pannon deposits across the Drava Basin, Croatia and Hungary

2020 ◽  
Vol 73 (3) ◽  
pp. 177-195 ◽  
Author(s):  
Krisztina Sebe ◽  
◽  
Marijan Kovačić ◽  
Imre Magyar ◽  
Krešimir Krizmanić ◽  
...  

Upper Miocene to Pliocene (Pannonian) sediments of the Pannonian Basin System accumulated in the brackish Lake Pannon and the fluvial feeder systems, between 11.6-2.6 Ma. Their stratigraphic subdivision has been problematic for a long time due to the laterally prograding architecture of the basin fill and the historically independently evolving stratigraphic schemes of the neighbouring countries. We correlated the lithostratigraphic units of the Lake Pannon deposits between Hungary and Croatia in the Drava Basin, using lithological, sedimentological and palaeontological data from boreholes and outcrops, and seismic correlation. The Croatica and Medvedski breg formations in Croatia correspond to the Endrőd Fm. in Hungary, comprising shallow to deep water, open lacustrine, calcareous to argillaceous marls. The Andraševec fm. in Croatia corresponds to the Szolnok and Algyő Fms. in Hungary, consisting of sandstones and siltstones of turbidite systems and of clay marls deposited on the shelf-break slope. The Nova Gradiška fm. in Croatia is an equivalent of the Újfalu Fm. in Hungary, built up of a variety of lithologies, including sand, silt, clay and huminitic clay, deposited in deltaic environments. The Pluska fm. in Croatia corresponds to the Zagyva Fm. in Hungary, consisting of variegated clays, silts, sands and lignites, deposited in alluvial and fluvial environments. Coarse-grained (sand, gravel) basal layers are assigned to the Kálla and Békés Fms. and the Sveti Matej member of the Croatica fm. Coarse-grained intercalations within the deep-water marls belong to the Dorozsma Member of the Endrőd Fm. in Hungary, and to the Bačun member of the Medvedski breg fm. in Croatia. Sediment transport and lateral accretion of the shelf edge in the Drava Basin took place from the N, NW, and W, to the S, SE, and E, respectively. According to the biostratigraphic and chronostratigraphic analyses, the oldest shelf-break slopes in the Mura Basin are more than 8 Ma old, whereas the youngest ones in the southeasternmost part of the Drava Basin may be Pliocene in age (younger than 5.3 Ma). Thus, the 180 km long and at least 700 m deep Drava Basin was transformed into a fluvial plain during the last 3.5 million years of the Miocene.

2021 ◽  
Vol 151 (3) ◽  
pp. 235-252
Author(s):  
Krisztina Sebe ◽  
Gyula Konrád ◽  
Orsolya Sztanó

The Pécs-Danitzpuszta sand pit is the most important outcrop of the oldest Pannonian (upper Miocene, Tortonian) deposits in southern Hungary. A trench excavated in 2018 exposed Lake Pannon deposits and underlying Paratethys strata down to the upper Badenian (Serravallian), and together with the sand pit they make up a continuous sedimentary succession with a true thickness of ~220 metres. Due to tectonic deformation, middle Miocene deposits and carbonates in the lowermost Pannonian are overturned. Layers become vertical close to the marl-sand boundary, then the dip changes to normal, with continuously decreasing dip angles. The exposed succession starts with 5 m of upper Badenian (13.8-12.6 Ma old) calcareous marls and sandy limestones with sublittoral, then littoral molluscs, which were deposited in the normal salinity seawaters of the Central Paratethys. The overlying 8 m of sand, silt, sandy breccia and conglomerate are fossil-free,; only the lowermost silt layer contains reworked Badenian microfauna. This unit probably accumulated from gravity-driven flows in a fan-like, probably terrestrial depositional setting. The next 7.5 m of frequently alternating thin-bedded limestones, marls and clays with sublittoral biota represent rapid transgression. Foraminifers, ostracods, molluscs and calcareous nannoplankton indicate late Sarmatian, then Pannonian age for this interval. However, the locations of the boundaries indicated by the various groups are not are not consistent, making the position of the Sarmatian/Pannonian boundary uncertain. The Sarmatian beds with marine fossils still accumulated in the Paratethys, between ~12.1–11.6 Ma, under varying salinities due among others to temporary freshwater input. The Pannonian strata already represent sediments of the brackish Lake Pannon. Above these beds, uniform calcareous marl becomes dominant with some clay layers and graded or structureless conglomerate to sandstone interbeds. The deposition of the overall 64- m- thick Pannonian calcareous marl section took place in the open, probably few -hundred -metres -deep water of the lake between ~11.62 and 10.5–10.2 Ma. It may represent a rare, well-exposed surface occurrence of the Endrőd Formation which is known from thousands of wells in the Pannonian Basin. Above this section, a 6-7 -m- thick transitional interval of silty marls and sands is followed by ~140 m of limonitic, pebbly sands. They have poor to moderate sorting and rounding, metre -thick beds with transitional boundaries and abundant fossils and clasts reworked from older Miocene units. Their accumulation took place between 10.2-10.5 and 9.6 Ma by gravity flows connected to deep-water portions of fan deltas.


2016 ◽  
Vol 67 (6) ◽  
pp. 561-571 ◽  
Author(s):  
Imre Magyar ◽  
István Cziczer ◽  
Orsolya Sztanó ◽  
Árpád Dávid ◽  
Michael Johnson

Abstract Stratigraphic subdivision of the Upper Miocene deposits in the Pannonian Basin has been traditionally based on the endemic mollusc species of Lake Pannon. The cockle species Lymnocardium soproniense Vitális, apparently evolving through a sympatric speciation event in the sublittoral zone of Lake Pannon about 10.2-10.3 Ma, attained wide geographical distribution in the Pannonian basin and thus may serve as a good stratigraphic marker. Lymnocardium soproniense was one of the few large-sized cockles in Lake Pannon, most closely related to its ancestor, L. schedelianum (Fuchs), and to another descendant of the latter, L. variocostatum Vitális. According to the δ18O stable isotope record of its shells, the large size of L. soproniense was coupled with an extended life time of more than 10 years, probably reflecting a stable lake environment with increased resource availability and decreased predation. The species lived in quiet offshore conditions, below the storm wave base, where clay was deposited from suspension and the influence of currents was negligible. The base of the Lymnocardium soproniense Zone in the sublittoral deposits of Lake Pannon is defined by the first occurrence of the species, whereas the top of the zone is marked with the base of the overlying Congeria praerhomboidea Zone, defined by the FAD of C. praerhomboidea.


2021 ◽  
Vol 151 (4) ◽  
pp. 335-361
Author(s):  
Dániel Botka ◽  
Nóra Rofrics ◽  
Lajos Katona ◽  
Imre Magyar

As the almost 200-year palaeontological research revealed, the geographical distribution of various fossil mollusk faunas in deposits of the late Neogene Lake Pannon displays a regular pattern. The lake basin was filled by lateral accretion of sediments, resulting in condensed sedimentary successions in the distal parts of the basin and successively younger shallow-water deposits from the margins towards the basin center. Exposed intra-basin basement highs, however, broke this strict pattern when they acted as sediment sources during the lake’s lifetime. The Mecsek Mts in southern Hungary was such an island in Lake Pannon during the early late Miocene. Deposition of the 200 m thick Sarmatian–Pannonian sedimentary succession in Pécs-Danitzpuszta at the foot of the Mecsek Mts was thus controlled by local tectonic and sedimentary processes, resulting in a unique succession of facies and mollusk faunas. A typical, restricted marine Sarmatian fauna is followed by a distinct freshwater or oligohaline interval, which, according to micropalaeontological evidence, still belongs to the Sarmatian. Although poor preservation of fossils does not allow firm conclusions, it seems that freshwater Sarmatian snails were the ancestors of the brackish-water-adapted early Pannonian pulmonate snail taxa. The successive “Sarmatian-type” dwarfed cockle fauna is similar to those widely reported from the Sarmatian–Pannonian boundary in various parts of the Pannonian Basin; however, a thorough taxonomic study of its species is still lacking. The bulk of the sedimentary succession corresponds to the sublittoral to profundal “white marls,” which are widespread in the southern Pannonian Basin. In Croatia and Serbia, they are divided into the Lymnocardium praeponticum or Radix croatica Zone (11.6–11.4 Ma) below, and the Congeria banatica Zone (11.4–9.7 Ma) above; this division can be applied to the Pécs-Danitzpuszta succession as well. Sedimentation of the calcareous marl, however, ceased at Pécs-Danitzpuszta at about 10.5–10.2 Ma ago (during the younger part of the Lymnocardium schedelianum Chron), when silt was deposited with a diverse sublittoral mollusk fauna. Similar faunas are known from the Vienna Basin, southern Banat, and other marginal parts of the Pannonian Basin System, but not from Croatia and Serbia, where deposition of the deep-water white marls continued during this time. Finally, the Pécs-Danitzpuszta succession was capped with a thick, coarse-grained sand series that contains mollusk molds and casts representing a typical littoral assemblage. This littoral fauna is well-known from easternmost Austria, northern Serbia, and northwestern Romania, but never directly from above the sublittoral L. schedelianum Zone. The fauna is characteristic for the upper part of the Lymnocardium conjungens Zone and has an inferred age of ca. 10.2–10.0 Ma. The Pécs-Danitzpuszta succession thus allows to establish the chronostratigraphic relationship between mollusk faunas that have not been observed in one succession nor in close proximity to each other in other parts of the Pannonian Basin.


2013 ◽  
Vol 103 ◽  
pp. 149-167 ◽  
Author(s):  
Orsolya Sztanó ◽  
Péter Szafián ◽  
Imre Magyar ◽  
Anna Horányi ◽  
Gábor Bada ◽  
...  

2018 ◽  
Vol 6 (1) ◽  
pp. SB65-SB76 ◽  
Author(s):  
Ivanišević Saša ◽  
Radivojević Dejan

Exploration for oil and gas in mature areas, such as the Pannonian Basin, can benefit from reexamination of old data using more advanced modern workflows that focus on the temporal and spatial aspects of sediment deposition. Specifically, we apply a new environment of deposition model that interprets the Upper Miocene-Pliocene sediments as being deposited in a rapidly filling basin characterized by quick shelf edge progradation from the northwest toward the southeast. Reconstruction of this shelf edge trajectory reveals the absence of a Lake Pannon level drop during this time; rather, deposition was done during a highstand systems tract. We divided the Serbian postrift sediments into the Hetin, Majdan, Mokrin, Kikinda, and Paludina Formations used by geoscientists in Hungary and Slovakia. Hemipelagic marls of the Hetin Formation serve as the source rocks for the Majdan Formation basin-center turbidite reservoirs. These turbidite reservoirs are in turn sealed by clays and marls of the Mokrin slope formation. In contrast to previous interpretations of this part of the basin, our new sequence stratigraphy interpretation of the depositional environment interpretation significantly reduces the miscorrelation of the target sandstone reservoirs. Application of this sequence stratigraphy model also promises a better understanding of the other elements of the hydrocarbon system, which should lead to better production performance and reservoir management.


2011 ◽  
Vol 62 (3) ◽  
pp. 267-278 ◽  
Author(s):  
Ljupko Rundić ◽  
Meri Ganić ◽  
Slobodan Knežević ◽  
Ali Soliman

Upper Miocene Pannonian sediments from Belgrade (Serbia): new evidence and paleoenvironmental considerationsThe Late Miocene sublittoral marls of the Pannonian Stage (the long-lived Lake Pannon) were studied. From neotectonic point of view, the investigated area represents a natural border between two different morphostructural domains: the Pannonian Basin to the north and the Peri-Pannonian Realm to the south. More than 20 mollusc and 34 ostracod species were identified which indicate the upper part of the Lower Pannonian and the lower part of the Middle Pannonian ("Serbian") predominantly. The identified dinoflagellate cyst assemblage (21 taxa) hinders assignment of the studied samples to a Pannonian substage but supports the high endemism of the Pannonian flora. The lithostratigraphical, paleontological, and paleoecological analyses indicate a mesohaline (8-16 ‰), sublittoral (<90 m deep) environment of the early Lake Pannon. The estimated stratigraphic range for the investigated deposits is 9.8-11.4 Ma.


Author(s):  
Cesar A. López ◽  
Animesh Agarwal ◽  
Que N. Van ◽  
Andrew G. Stephen ◽  
S. Gnanakaran

AbstractSmall GTPase proteins are ubiquitous and responsible for regulating several processes related to cell growth and differentiation. Mutations that stabilize their active state can lead to uncontrolled cell proliferation and cancer. Although these proteins are well characterized at the cellular scale, the molecular mechanisms governing their functions are still poorly understood. In addition, there is limited information about the regulatory function of the cell membrane which supports their activity. Thus, we have studied the dynamics and conformations of the farnesylated KRAS4b in various membrane model systems, ranging from binary fluid mixtures to heterogeneous raft mimics. Our approach combines long time-scale coarse-grained (CG) simulations and Markov state models to dissect the membrane-supported dynamics of KRAS4b. Our simulations reveal that protein dynamics is mainly modulated by the presence of anionic lipids and to some extent by the nucleotide state (activation) of the protein. In addition, our results suggest that both the farnesyl and the polybasic hypervariable region (HVR) are responsible for its preferential partitioning within the liquid-disordered (Ld) domains in membranes, potentially enhancing the formation of membrane-driven signaling platforms. Graphic Abstract


2021 ◽  
Author(s):  
Anton Khitrenko ◽  
Adelia Minkhatova ◽  
Vladimir Orlov ◽  
Dmitriy Kotunov ◽  
Salavat Khalilov

Abstract Western Siberia is a unique petroleum basin with exclusive geological objects. Those objects allow us to test various methods of sequence stratigraphy, systematization and evaluation approaches for reservoir characterization of deep-water sediments. Different methods have potential to decrease geological uncertainty and predict distribution and architecture of deep-water sandstone reservoir. There are many different parameters that could be achieved through analysis of clinoform complex. Trajectories of shelf break, volume of sediment supply and topography of basin influence on architecture of deep-water reservoir. Based on general principles of sequence stratigraphy, three main trajectories changes shelf break might be identified: transgression, normal regression and forced regression. And each of them has its own distinctive characteristics of deepwater reservoir. However, to properly assess the architecture of deepwater reservoir and potential of it, numerical characteristics are necessary. In our paper, previously described parameters were analyzed for identification perspective areas of Achimov formation in Western Siberia and estimation of geological uncertainty for unexplored areas. In 1996 Helland-Hansen W., Martinsen O.J. [5] described different types of shoreline trajectory. In 2002 Steel R.J., Olsen T. [11] adopted types of shoreline trajectory for identification of truncation termination. O. Catuneanu (2009) [1] summarize all information with implementation basis of sequence stratigraphy. Over the past decade, many geoscientists have used previously published researches to determine relationship between geometric structures of clinoforms and architecture of deep-water sediments and its reservoir quality. Significant amount of publications has allowed to form theoretical framework for the undersanding sedimentation process and geometrical configuration of clinoforms. However, there is still no relationship between sequence stratigraphy framework of clinoroms and reservoir quality and its uncertainty, which is necessary for new area evaluation.


Sign in / Sign up

Export Citation Format

Share Document