scholarly journals Micro- and nanostructured titanium(IV) oxide in sono-, photo- and sonophotocatalytic degradation of xanthene dye rhodamine b (Review)

2021 ◽  
Vol 4 (1) ◽  
pp. 44-52
Author(s):  
Yu. V. Sukhatskyi ◽  
◽  
Z. O. Znak ◽  
D. V. Chupinskyi ◽  
◽  
...  

Adsorption methods for removing Rhodamine B from wastewater and oxidative degradation methods based on the use of advanced oxidation processes (sonolysis, photolysis, sono-, photo- and sonophotocatalysis) are considered. It was established that naturally occurring materials (such as clays, zeolites, coal ash, anaerobic sludge, agricultural solid wastes) and their modified or activated analogues are used as adsorbents for the removal of Rhodamine B. The possible mechanism of photo- and sonophotocatalytic degradation of Rhodamine B in the presence of micro- and nanostructured titanium (IV) oxide is presented. The effectiveness of its application for degradation of Rhodamine B is analyzed.

Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 974
Author(s):  
Piotr Zawadzki ◽  
Małgorzata Deska

In this study, the effectiveness of a rhodamine B (RhB) dye degradation process at a concentration of 20 mg/L in different advanced oxidation processes—H2O2/UV, O3/UV and PDS/UV—has been studied. The use of UV in a photo-assisted ozonation process (O3/UV) proved to be the most effective method of RhB decolorization (90% after 30 min at dye concentration of 100 mg/L). The addition of sulfate radical precursors (sodium persulfate, PDS) to the reaction environment did not give satisfactory effects (17% after 30 min), compared to the PDS/UV system (70% after 30 min). No rhodamine B decolorization was observed using hydrogen peroxide as a sole reagent, whereas an effect on the degree of RhB degradation was observed when UV rays strike the sample with H2O2 (33% after 30 min). The rhodamine B degradation process followed the pseudo-first-order kinetics model. The combined PDS/O3/UV process has shown 60% color removal after 30 min of reaction time at an initial dye concentration of 100 mg/L. A similar effectiveness was obtained by only applying ozone or UV-activated persulfate, but at a concentration 2–5 times lower (20 mg/L). The results indicated that the combined PDS/O3/UV process is a promising method for high RhB concentrations (50–100 mg/L) comparing to other alternative advanced oxidation processes.


2018 ◽  
Vol 54 (82) ◽  
pp. 11622-11625 ◽  
Author(s):  
Xiaomei Cheng ◽  
Lianhai Zu ◽  
Yue Jiang ◽  
Donglu Shi ◽  
Xiaoming Cai ◽  
...  

A pseudo-Fenton reaction works synergistically with photocatalysis to greatly accelerate the oxidative degradation rate.


2011 ◽  
Vol 171 (1) ◽  
pp. 127-135 ◽  
Author(s):  
Mehmet A. Oturan ◽  
Nihal Oturan ◽  
Mohamed C. Edelahi ◽  
Fetah I. Podvorica ◽  
Kacem El Kacemi

2018 ◽  
Vol 6 (3) ◽  
pp. 3610-3620 ◽  
Author(s):  
Karuppannan Rokesh ◽  
Singaravelu Chandra Mohan ◽  
Subbian Karuppuchamy ◽  
Kandasamy Jothivenkatachalam

1997 ◽  
Vol 35 (4) ◽  
pp. 257-264 ◽  
Author(s):  
Claus Höfl ◽  
Gerhard Sigl ◽  
Oliver Specht ◽  
Ilse Wurdack ◽  
Dietrich Wabner

Using two samples of a pharmaceutical wastewater, the efficiency of three advanced oxidation processes (AOPs) (H2O2/UV, O3/UV and H2O2/Fe(II)) for the removal of adsorbable organic halogen (AOX) and chemical oxygen demand (COD) were compared on a laboratory scale. The AOX contents of these samples ranged from 3 to 5 mg/L. Generally the results showed that all three methods are suitable for the degradation of AOX and COD. UV irradiation involved a high selectivity for the degradation of AOX compared to COD. On the other hand, processes based on hydroxyl radicals were less selective but considerably more effective in COD degradation. This explains why the combined methods H2O2/UV and O3/UV lead both to a complete destruction of AOX and a large removal of COD. During ozone treatment – without UV radiation – a decrease of AOX was also observed, although to a lower degree. Using Fenton's reagent both AOX and COD could be removed almost completely. The reaction time needed for this kind of treatment was very low compared to the other two AOPs. O3/UV treatment showed the largest consumption of “activated” oxygen (AO) during COD degradation. H2O2/Fe(II) treatment required almost the same amount of AO as H2O2/UV.


2021 ◽  
Vol 28 (1) ◽  
pp. 11-28
Author(s):  
Stanisław Wacławek

Abstract Environmental pollution due to humankind’s often irresponsible actions has become a serious concern in the last few decades. Numerous contaminants are anthropogenically produced and are being transformed in ecological systems, which creates pollutants with unknown chemical properties and toxicity. Such chemical pathways are usually examined in the laboratory, where hours are often needed to perform proper kinetic experiments and analytical procedures. Due to increased computing power, it becomes easier to use quantum chemistry computation approaches (QCC) for predicting reaction pathways, kinetics, and regioselectivity. This review paper presents QCC for describing the oxidative degradation of contaminants by advanced oxidation processes (AOP, i.e., techniques utilizing •OH for degradation of pollutants). Regioselectivity was discussed based on the Acid Blue 129 compound. Moreover, the forecasting of the mechanism of hydroxyl radical reaction with organic pollutants and the techniques of prediction of degradation kinetics was discussed. The reactions of •OH in various aqueous systems (explicit and implicit solvation) with water matrix constituents were reviewed. For example, possible singlet oxygen formation routes in the AOP systems were proposed. Furthermore, quantum chemical computation was shown to be an excellent tool for solving the controversies present in the field of environmental chemistry, such as the Fenton reaction debate [main species were determined to be: •OH < pH = 2.2 < oxoiron(IV)]. An ongoing discussion on such processes concerning similar reactions, e.g., associated with sulphate radical-based advanced oxidation processes (SR-AOP), could, in the future, be enriched by similar means. It can be concluded that, with the rapid growth of computational power, QCC can replace most of the experimental investigations related to the pollutant’s remediation in the future; at the same time, experiments could be pushed aside for quality assessment only.


Sign in / Sign up

Export Citation Format

Share Document