scholarly journals MATHEMATICAL MODELS OF HEAT TRANSFER IN ELEMENTS OF TURBO GENERATORS (CONTINUED)

2020 ◽  
Vol 2 (1) ◽  
pp. 21-28
Author(s):  
V. I. Havrysh ◽  
◽  
B. O. Bilinskyi ◽  
O. S. Korol ◽  
R. R. Shkrab ◽  
...  

Previously developed [8] and presented new mathematical models for the analysis of temperature regimes in individual elements of turbo generators, which are geometrically described by isotropic half-space and space with an internal heat source of cylindrical shape. Cases are also considered for half-space, when the fuel-releasing cylinder is thin, and for space, when it is heat-sensitive. For this purpose, using the theory of generalized functions, the initial differential equations of thermal conductivity with boundary conditions are written in a convenient form. To solve the obtained boundary value problems of thermal conductivity, the integral Hankel transformation was used, and as a result, analytical solutions in the images were obtained. The inverse Hankel integral transformation was applied to these solutions, which made it possible to obtain the final analytical solutions of the initial problems. The obtained analytical solutions are presented in the form of improper convergent integrals. Computational programs have been developed to determine the numerical values ​​of temperature in the above structures, as well as to analyze the heat transfer in the elements of turbo generators due to different temperature regimes due to heating by internal heat sources concentrated in the cylinder volume. Using these programs, graphs are presented that show the behavior of curves constructed using numerical values ​​of the temperature distribution depending on the spatial radial and axial coordinates. The obtained numerical values ​​of temperature indicate the correspondence of the given mathematical models for determining the temperature distribution to the real physical process. The software also allows you to analyze media with internal heating, concentrated in the spatial figures of the correct geometric shape, in terms of their heat resistance. As a result, it becomes possible to increase it, to determine the allowable temperatures of normal operation of turbo generators, to protect them from overheating, which can cause the destruction of not only individual elements but also the entire structure.


2017 ◽  
Vol 374 ◽  
pp. 106-120 ◽  
Author(s):  
Gbeminiyi M. Sobamowo ◽  
Bayo Y. Ogunmola ◽  
Gaius Nzebuka

In this study, heat transfer in a longitudinal rectangular fin with temperature-dependent thermal properties and internal heat generation has been analyzed using finite volume method. The numerical solution was validated with the exact solution for the linear problem. The developed heat transfer models were used to investigate the effects of thermo-geometric parameters, coefficient of heat transfer and thermal conductivity (non-linear) parameters on the temperature distribution, heat transfer and thermal performance of the longitudinal rectangular fin. From the results, it shows that the fin temperature distribution, the total heat transfer, and the fin efficiency are significantly affected by the thermo-geometric of the fin. Therefore, the results obtained in this analysis serve as basis for comparison of any other method of analysis of the problem and they also provide platform for improvement in the design of fin in heat transfer equipment.



2021 ◽  
pp. 014459872199800
Author(s):  
Xiaolong Wang ◽  
Wenke Zhang ◽  
Qingqing Li ◽  
Zhenqiang Wei ◽  
Wenjun Lei ◽  
...  

Radiant floor cooling systems are increasingly used in practice. The temperature distribution on the floor surface and inside the floor structure, especially the minimum and average temperature of floor surface, determines the thermal performance of radiant floor systems. A good temperature distribution of the floor structure is very important to prevent occupant discomfort and avoid possible condensation in summer cooling. In this study, based on the heat transfer model of the single-layer homogeneous floor structure when there is no internal heat radiation in the room, this paper proposes a heat transfer model of single-layer floor radiant cooling systems when the room has internal heat radiation. Using separation variable methods, an analytical solution was developed to estimate temperature distribution of typical radiant floor cooling systems with internal heat radiation, which can be used to calculate the minimum temperature and the average temperature of typical composite floor structure. The analytical solution was validated by experiments. The values of the measured experiments are in a good agreement with the calculations. The absolute error between the calculated and the measured floor surface temperatures was within 0.45°C. The maximum relative error was within 2.31%. Prove that this model can be accepted. The proposed method can be utilized to calculate the cooling capacity of a typical multi-layer composite floor and will be developed in the future study for design of a typical radiant floor cooling system.



2015 ◽  
Vol 13 (1) ◽  
pp. 103-112 ◽  
Author(s):  
Kun Lei ◽  
Hongfang Ma ◽  
Haitao Zhang ◽  
Weiyong Ying ◽  
Dingye Fang

Abstract The heat conduction performance of the methanol synthesis reactor is significant for the development of large-scale methanol production. The present work has measured the temperature distribution in the fixed bed at air volumetric flow rate 2.4–7 m3 · h−1, inlet air temperature 160–200°C and heating tube temperature 210–270°C. The effective radial thermal conductivity and effective wall heat transfer coefficient were derived based on the steady-state measurements and the two-dimensional heat transfer model. A correlation was proposed based on the experimental data, which related well the Nusselt number and the effective radial thermal conductivity to the particle Reynolds number ranging from 59.2 to 175.8. The heat transfer model combined with the correlation was used to calculate the temperature profiles. A comparison with the predicated temperature and the measurements was illustrated and the results showed that the predication agreed very well with the experimental results. All the absolute values of the relative errors were less than 10%, and the model was verified by experiments. Comparing the correlations of both this work with previously published showed that there are considerable discrepancies among them due to different experimental conditions. The influence of the particle Reynolds number on the temperature distribution inside the bed was also discussed and it was shown that improving particle Reynolds number contributed to enhance heat transfer in the fixed bed.



2019 ◽  
Vol 18 (2) ◽  
pp. 85
Author(s):  
A. Miguelis ◽  
R. Pazetto ◽  
R. M. S. Gama

This work presents the solution of the steady-state heat transfer problem in a rectangular plate with an internal heat source in a context in which the thermal conductivity depends on the local temperature. This generalization of one of the most classical heat transfer problems is carried out with the aid of the Kirchhoff transformation and employs only well known tools, as the superposition of solutions and the Fourier series. The obtained results illustrate how the usual procedures may be extended for solving more realistic physical problems (since the thermal conductivity of any material is temperature-dependent). A general formula for evaluating the Kirchhoff transformation as well as its inverse is presented too. This work has a strong didactical contribution since such analytical solutions are not found in any classical heat transfer book. In addition, the main idea can be used in a lot of similar problems.



2013 ◽  
Vol 2013 (0) ◽  
pp. 29-30
Author(s):  
Takuhiro Matsumoto ◽  
Yohei shimomiya ◽  
Takeshi yokomori ◽  
Yuji nakamura


1981 ◽  
Vol 103 (4) ◽  
pp. 739-744 ◽  
Author(s):  
B. Vick ◽  
M. N. O¨zis¸ik

Heat transfer across two surfaces which make and break contact periodically according to a continuous regular cycle is investigated theoretically and exact analytical solutions are developed for the quasi-steady-state temperature distribution for a two-region, one-dimensional, periodically contacting model. The effects of the Biot number, the thermal conductivity and thermal diffusivity of the materials and the duration of contact and break periods on the interface temperature and the temperature distribution within the solids are illustrated with representative temperature charts.



Sign in / Sign up

Export Citation Format

Share Document