Topological Invariants and Differential Geometry

Author(s):  
Paula Tretkoff

This chapter deals with topological invariants and differential geometry. It first considers a topological space X for which singular homology and cohomology are defined, along with the Euler number e(X). The Euler number, also known as the Euler-Poincaré characteristic, is an important invariant of a topological space X. It generalizes the notion of the cardinality of a finite set. The chapter presents the simple formulas for computing the Euler-Poincaré characteristic (Euler number) of many of the spaces to be encountered throughout the book. It also discusses fundamental groups and covering spaces and some basics of the theory of complex manifolds and Hermitian metrics, including the concept of real manifold. Finally, it provides some general facts about divisors, line bundles, and the first Chern class on a complex manifold X.

2009 ◽  
Vol 20 (02) ◽  
pp. 167-188
Author(s):  
INDRANIL BISWAS

Let f : M → A be a smooth surjective algebraic morphism, where M is a connected complex projective manifold and A a complex abelian variety, such that all the fibers of f are rationally connected. We show that an algebraic principal G-bundle EG over M admits a flat holomorphic connection if EG admits a holomorphic connection; here G is any connected reductive linear algebraic group defined over ℂ. We also show that EG admits a holomorphic connection if and only if any of the following three statements holds. (1) The principal G-bundle EG is semistable, c2( ad (EG)) = 0, and all the line bundles associated to EG for the characters of G have vanishing rational first Chern class. (2) There is an algebraic principal G-bundle E'G on A such that f*E'G = EG, and all the translations of E'G by elements of A are isomorphic to E'G itself. (3) There is a finite étale Galois cover [Formula: see text] and a reduction of structure group [Formula: see text] to a Borel subgroup B ⊂ G such that all the line bundles associated to ÊB for the characters of B have vanishing rational first Chern class. In particular, the above three statements are equivalent.


2000 ◽  
Vol 52 (3) ◽  
pp. 582-612 ◽  
Author(s):  
Lisa C. Jeffrey ◽  
Jonathan Weitsman

AbstractThis paper treats the moduli space g,1(Λ) of representations of the fundamental group of a Riemann surface of genus g with one boundary component which send the loop around the boundary to an element conjugate to exp Λ, where Λ is in the fundamental alcove of a Lie algebra. We construct natural line bundles over g,1(Λ) and exhibit natural homology cycles representing the Poincaré dual of the first Chern class. We use these cycles to prove differential equations satisfied by the symplectic volumes of these spaces. Finally we give a bound on the degree of a nonvanishing element of a particular subring of the cohomology of the moduli space of stable bundles of coprime rank k and degree d.


2021 ◽  
Vol 9 ◽  
Author(s):  
Patrick Graf ◽  
Martin Schwald

Abstract Let X be a normal compact Kähler space with klt singularities and torsion canonical bundle. We show that X admits arbitrarily small deformations that are projective varieties if its locally trivial deformation space is smooth. We then prove that this unobstructedness assumption holds in at least three cases: if X has toroidal singularities, if X has finite quotient singularities and if the cohomology group ${\mathrm {H}^{2} \!\left ( X, {\mathscr {T}_{X}} \right )}$ vanishes.


Author(s):  
Ping Li ◽  
Fangyang Zheng

Abstract This article is concerned with Chern class and Chern number inequalities on polarized manifolds and nef vector bundles. For a polarized pair $(M,L)$ with $L$ very ample, our 1st main result is a family of sharp Chern class inequalities. Among them the 1st one is a variant of a classical result and the equality case of the 2nd one is a characterization of hypersurfaces. The 2nd main result is a Chern number inequality on it, which includes a reverse Miyaoka–Yau-type inequality. The 3rd main result is that the Chern numbers of a nef vector bundle over a compact Kähler manifold are bounded below by the Euler number. As an application, we classify compact Kähler manifolds with nonnegative bisectional curvature whose Chern numbers are all positive. A conjecture related to the Euler number of compact Kähler manifolds with nonpositive bisectional curvature is proposed, which can be regarded as a complex analogue to the Hopf conjecture.


2003 ◽  
Vol 12 (02) ◽  
pp. 243-268 ◽  
Author(s):  
ALBERTO CAVICCHIOLI ◽  
DUŠAN REPOVŠ ◽  
FULVIA SPAGGIARI

We introduce a family of cyclic presentations of groups depending on a finite set of integers. This family contains many classes of cyclic presentations of groups, previously considered by several authors. We prove that, under certain conditions on the parameters, the groups defined by our presentations cannot be fundamental groups of closed connected hyperbolic 3–dimensional orbifolds (in particular, manifolds) of finite volume. We also study the split extensions and the natural HNN extensions of these groups, and determine conditions on the parameters for which they are groups of 3–orbifolds and high–dimensional knots, respectively.


Author(s):  
Alina Marian ◽  
Dragos Oprea ◽  
Rahul Pandharipande

2015 ◽  
Vol 29 (24) ◽  
pp. 1550135
Author(s):  
Paul Bracken

It is shown that the Kubo equation for the Hall conductance can be expressed as an integral which implies quantization of the Hall conductance. The integral can be interpreted as the first Chern class of a [Formula: see text] principal fiber bundle on a two-dimensional torus. This accounts for the conductance given as an integer multiple of [Formula: see text]. The formalism can be extended to deduce the fractional conductivity as well.


1996 ◽  
Vol 08 (03) ◽  
pp. 457-486
Author(s):  
GIANDOMENICO ORLANDI

Motivated by the works of F. Bethuel, H. Brezis, F. Hélein [5] and of F. Bethuel, T. Rivière [6], an asymptotic analysis is carried out for minimizers of the Ginzburg-Landau functional depending on a parameter ε, in the more general case of complex line bundles with prescribed Chern class over compact Riemann surfaces. Such a functional describes a 2-dimensional abelian Higgs model and is also related to phenomena in superconductivity. A suitable renormalized energy is defined which characterizes the singularities (degree one vortices) of the limiting configuration.


Sign in / Sign up

Export Citation Format

Share Document